
A BRIEF HISTORY OF
VIRTUALIZATION

SIPB Cluedump Series 2010
Geoffrey Thomas

WHAT IS VIRTUALIZATION?

Taking something not-virtual and making it virtual

Virtual memory

Virtual file systems

Virtual processors

Virtual machines

TYPES OF VIRTUALIZATION

Application virtualization

Desktop virtualization

Platform virtualization

Operating system virtualization

FORMAL DEFINITION

Gerald Popek (UCLA) and Robert Goldberg
(Honeywell/Harvard), July 1974

"A virtual machine is taken to be an efficient, isolated
duplicate of the real machine."

• Not a time-sharing operating system

• Not just virtual memory

FORMAL DEFINITION

Efficiency: normal instructions must be executed
directly

Resource control: must trap to VMM when changing
resource allocation

Equivalence: A program (read: OS) must work the
same with or without a VMM

FORMAL DEFINITION

Privileged instructions: trap when called from user
mode

Sensitive instructions: either change resource
allocation or are dependent on their physical-
memory location or processor state

Theorem: A VMM exists if sensitive ⊆ privileged

FORMAL DEFINITION

Does x86 virtualization work?

No, there are a bunch of unprivileged instructions
that can read from processor state registers, or can
impact physical-to-virtual memory.

X86 VIRTUALIZATION

So what now?

Full processor emulation

Dynamic translation (QEMU)

Binary translation (Virtual PC, VMware)

Paravirtualization (UML, Xen, VMware)

Hardware support (KVM, VMware)

EMULATION

Write a program that implements the processor.

It works.

It's slow.

DYNAMIC TRANSLATION

Write a program that puts together code that
implements the processor. Cache the results.

void op_mov1_T0_r1(void)
{
 T0 = env->regs[1];
}

It's a little faster.

It can be easily ported.

It's still not virtualization.

BINARY TRANSLATION

Write a program to scan the code for sensitive
instructions. Rewrite them. Cache the results.

It's quite fast. It can be faster than actual hardware in
some cases!

Efficiency, resource control, and equivalence

PARAVIRTUALIZATION

Give up on equivalence. Write your OS specifically for
the VMM.

#ifdef CONFIG_XEN
#include <inc/xen/xen.h>
#include <kern/hypervisor.h>

void start_kernel(start_info_t *si)
{
 static char hello[] = "Bootstrapping...\n";

 (void)HYPERVISOR_console_io(CONSOLEIO_write, strlen(hello), hello);
 ...

PARAVIRTUALIZATION

Give up on equivalence. Write your OS specifically for
the VMM.

Basically, make your OS a process in another OS.

Porting is anywhere from annoying to impossible.

Performance is in theory excellent.

HARDWARE VIRTUALIZATION

Add support to your hardware to satisfy the Popek
and Goldberg theorem.

It's easy on the software writer end. It does require
hardware support.

Exits can be slow compared to either
paravirtualization or clever BT.

OTHER APPROACHES

VirtualBox

Run guest ring 0 code in host ring 1

Use some BT

Slightly sacrifices fidelity for speed.

x86-specific.

OTHER APPROACHES

Paravirtualized drivers: “hypercalls” just for drivers

Paravirtualized block device (disks)

Paravirtualized network

Paravirtualized console

Bootup and memory allocation still happens under
BT. Drivers are easier to change than OS code.

OTHER APPROACHES

Containers (OS virtualization)

VMM : OS :: OS : application

Add isolation capabilities until we reach equivalence

“chroot but more awesome”

WHERE ARE WE GOING?

Lines between platform/OS/virtualization blurred

Use best techniques for performance

Commonplace

Cloud computing fulfills the promise of timesharing

