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Abstract
We describe a design pattern for writing programs that traverse data
structures built from rich mutually-recursive data types.Such pro-
grams often have a great deal of “boilerplate” code that simply
walks the structure, hiding a small amount of “real” code that con-
stitutes the reason for the traversal.
Our technique allows most of this boilerplate to be written once and
for all, or even generated mechanically, leaving the programmer
free to concentrate on the important part of the algorithm. These
generic programs are much more adaptive when faced with data
structure evolution because they contain many fewer lines of type-
specific code.
Our approach is simple to understand, reasonably efficient,and it
handles all the data types found in conventional functionalprogram-
ming languages. It makes essential use of rank-2 polymorphism, an
extension found in some implementations of Haskell. Further it re-
lies on a simple type-safe cast operator.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and The-
ory; D.2.13 [Software Engineering]: Reusable Software

General Terms
Design, Languages

Keywords
Generic programming, traversal, rank-2 types, type cast

1 Introduction
Suppose you have to write a function that traverses a rich, recur-
sive data structure representing a company’s organisational struc-
ture, and increases the salary of every person in the structure by
10%. The interesting bit of this algorithm is performing thesalary-
increase — but the code for the function is probably dominated by
“boilerplate” code that recurses over the data structure tofind the
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specified department as spelled out in Section 2. This is not an un-
usual situation. On the contrary, performing queries or transforma-
tions over rich data structures, nowadays often arising from XML
schemata, is becoming increasingly important.
Boilerplate code is tiresome to write, and easy to get wrong.More-
over, it is vulnerable to change. If the schema describing the com-
pany’s organisation changes, then so does every algorithm that re-
curses over that structure. In small programs which walk over one
or two data types, each with half a dozen constructors, this is not
much of a problem. In large programs, with dozens of mutually
recursive data types, some with dozens of constructors, themainte-
nance burden can become heavy.

Generic programmingtechniques aim to eliminate boilerplate code.
There is a large literature, as we discuss in Section 9, but much
of it is rather theoretical, requires significant language extensions,
or addresses only “purely-generic” algorithms. In this paper, we
present a simple but powerful design pattern for writing generic
algorithms in the strongly-typed lazy functional languageHaskell.
Our technique has the following properties:� It makes the application program adaptive in the face of data

type (or schema) evolution. As the data types change, only
two functions have to be modified, and those functions can
easily be generated because they are not application-specific.� It is simple and general. It copes with arbitrary data-type
structure without fuss, including parameterised, mutually-
recursive, and nested types. It also subsumes other styles of
generic programming such as term rewriting strategies.� It requires two extensions to the Haskell type system, namely
(a) rank-2 types and (b) a form of type-coercion operator.
However these extensions are relatively modest, and are inde-
pendently useful; they have both been available in two popular
implementations of Haskell, GHC and Hugs, for some time.

Our contribution is one of synthesis: we put together some rela-
tively well-understood ideas (type-safe cast, one-layer maps) in an
innovative way, to solve a practical problem of increasing impor-
tance. The paper should be of direct interest to programmers, and
library designers, but also to language designers because of the fur-
ther evidence for the usefulness of rank-2 polymorphic types.

The code for all the examples is available online at:
http://www.cs.vu.nl/Strafunski/gmap/

The distribution comes with generative tool support to generate
all datatype-specific boilerplate code. Our benchmarks show that
it is possible to get the run-time performance of typical generic
programs reasonably close to the hand-coded boilerplate-intensive
counterparts (Section 10).



2 The problem
We begin by characterising the problem we are addressing. Con-
sider the following data types that describe the organisational struc-
ture of a company. A company is divided into departments which
in turn have a manager, and consists of a collection of sub-units.
A unit is either a single employee or a department. Both managers
and ordinary employees are persons receiving a salary. Thatis:

data Company = C [Dept]
data Dept = D Name Manager [SubUnit]
data SubUnit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

Here is a small company represented by such a data structure:
genCom :: Company
genCom = C [D "Research" ralf [PU joost, PU marlow],

D "Strategy" blair []]

ralf, joost, marlow, blair :: Employee
ralf = E (P "Ralf" "Amsterdam") (S 8000)
joost = E (P "Joost" "Amsterdam") (S 1000)
marlow = E (P "Marlow" "Cambridge") (S 2000)
blair = E (P "Blair" "London") (S 100000)

The advent of XML has made schemata like this much more
widespread, and many tools exist for translating XML schemata
into data type definitions in various languages; in the case of
Haskell, HaXML includes such a tool [35]. There are often many
data types involved, sometimes with many constructors, andtheir
structure tends to change over time.

Now suppose we want to increase the salary of everyone in the com-
pany by a specified percentage. That is, we must write the function:
increase :: Float -> Company -> Company

So that(increase 0.1 genCom) will be just like genCom except
that everyone’s salary is increased by 10%. It is perfectly straight-
forward to write this function in Haskell:
increase k (C ds) = C (map (incD k) ds)

incD :: Float -> Dept -> Dept
incD k (D nm mgr us) =
D nm (incE k mgr) (map (incU k) us)

incU :: Float -> SubUnit -> SubUnit
incU k (PU e) = PU (incE k e)
incU k (DU d) = DU (incD k d)

incE :: Float -> Employee -> Employee
incE k (E p s) = E p (incS k s)

incS :: Float -> Salary -> Salary
incS k (S s) = S (s * (1+k))

Looking at this code, it should be apparent what we mean by “boil-
erplate”. Almost all the code consists of a routine traversal of the
tree. The only interesting bit isincS which actually increases a
Salary. As the size of the data type increases, the ratio of inter-
esting code to boilerplate decreases. Worse, this sort of boilerplate
needs to be produced for each new piece of traversal functionality.
For example, a function that finds the salary of a named individual
would require a new swathe of boilerplate.

3 Our solution
Our goal, then, is to writeincrease without the accompanying
boilerplate code. To give an idea of what is to come, here is the

code forincrease:
increase :: Float -> Company -> Company
increase k = everywhere (mkT (incS k))

And that is it! This code is formed from four distinct ingredients:� The functionincS (given in Section 2) is the “interesting
part” of the algorithm. It performs the arithmetic to increase
aSalary.� The functionmkT makes atype extensionof incS (readmkT
as “make a transformation”), so that it can be applied to any
node in the tree, not justSalary nodes. The type-extended
function,mkT (incS k), behaves likeincS when applied to
a Salary and like the identity function when applied to any
other type. We discuss type extension in Section 3.1.� The functioneverywhere is a generic traversal combinator
that applies its argument function to every node in the tree.
In this case, the function is the type-extendedincS func-
tion, which will increase the value ofSalary nodes and leave
all others unchanged. We discuss generic traversal in Sec-
tions 3.2 and 3.3.� Both mkT andeverywhere are overloaded functions, in the
Haskell sense, over the classesTypeable and Term (to be
introduced shortly). For each data type involved (Company,
Dept, Person, etc.) the programmer must therefore give an
instance declaration for the two classes. However these in-
stances are, as we shall see in Sections 3.2 and 8, extremely
simple — in fact, they are “pure boilerplate” — and they can
easily be generated mechanically. The software distribution
that comes with the paper includes a tool to do just that.

The following sections fill in the details of this sketch.

3.1 Type extension
The first step is to extend a function, such asincS, that works over
a single typet, to a function that works over many types, but is
the identity at all types butt. The fundamental building-brick is a
type-safecast operator the type of which involves a Haskell class
Typeable of types that can be subject to a cast:
-- An abstract class
class Typeable

-- A type-safe cast operator
cast :: (Typeable a, Typeable b) => a -> Maybe b

This cast function takes an argumentx of typea. It makes a run-
time test that compares the typesa andb; if they are the same type,
cast returnsJust x; if not, it returnsNothing.1 For example, here
is an interactiveGHCi session:
Prelude> (cast ’a’) :: Maybe Char
Just ’a’
Prelude> (cast ’a’) :: Maybe Bool
Nothing
Prelude> (cast True) :: Maybe Bool
Just True

The type signature in the above samples givescast its result con-
text,Typeable b, so it knows what the result type must be; without
that, it cannot do the type test. Because the type classTypeable
constrains the types involved,cast is not completely polymor-
phic: both argument and result types must be instances of theclass
Typeable.

Type-safe cast can be integrated with functional programming in
various ways, preferably by a language extension. In fact, it is

1In many languages a “cast” operator performs arepresentation
changeas well astype change. Here, cast is operationally the
identity function; it only makes a type change.



well-known folk lore in the Haskell community that much of the
functionality ofcast can be programmed in standard Haskell. In
Section 8, we provide a corresponding Haskell-encoding that can
be regarded as a reference implementation for type-safe cast. This
will clarify that a corresponding extension turns out to be amodest
one. For the coming sections we will simply assume thatcast is
available, and that every type is an instance ofTypeable.

Givencast, we can writemkT, which we met in Section 3:
mkT :: (Typeable a, Typeable b)

=> (b -> b) -> a -> a
mkT f = case cast f of

Just g -> g
Nothing -> id

That is,mkT f x appliesf to x if x’s type is the same asf’s argu-
ment type, and otherwise applies the identity function tox. Here
are some examples:
Prelude> (mkT not) True
False
Prelude> (mkT not) ’a’
’a’

“mkT” is short for “make a transformation”, because it constructs a
generic transformation function. We can usemkT to lift incS, thus:
inc :: Typeable a => Float -> a -> a
inc k = mkT (incS k)

Soinc is applicable to any type that is an instance ofTypeable but
we ultimately aim at a function that appliesinc to all nodesin a
tree. This necessitates generic traversal.

3.2 One-layer traversal
Our approach to traversal has two steps: for each data type wewrite
a single function,gmapT, that traverses values of that type; then we
build a variety of recursive traversals fromgmapT. In the context of
Haskell, we overloadgmapT using a type class,Term:
class Typeable a => Term a where

gmapT :: (forall b. Term b => b -> b) -> a -> a
The intended behaviour is this:gmapT takes a generic transforma-
tion (such asinc k) and applies it to all theimmediatechildren of
the value. It is easiest to understand this idea by example. Here is
theinstance declaration forEmployee:
instance Term Employee where

gmapT f (E per sal) = E (f per) (f sal)
Here we see clearly thatgmapT simply appliesf to the immediate
children ofE, namelyper andsal, and rebuilds a newE node.

There are two things worth mentioning regarding the type of
gmapT and its hosting classTerm. Firstly, gmapT has a non-
standard type: its first argument is apolymorphicfunction, of type
forall b. Term b => b -> b. Why? Because it is applied to
bothper andsal in theinstance declaration, and those two fields
have different types. Haskell 98 would reject the type ofgmapT,
but rank-2 types like these have become quite well-established in
the Haskell community. We elaborate in Section 9.1. Secondly,
note the recursion in the class declaration ofTerm. The member
signature forgmapT refers toTerm via a class constraint.

Obviously, we can provide a simple schematic definition forgmapT
for arbitrary termsC t1 ... tn:

gmapT f (C t1 ... tn) = C (f t1) ... (f tn)
When the node has no children,gmapT has no effect. Hence the
Term instance forBool looks like this:
instance Term Bool where

gmapT f x = x

The important thing to notice is thatgmapT only appliesf to the
immediatechildren of the node as opposed to any kind of recursive
traversal. Here, for example, is theTerm instance for lists, which
follows exactly the same pattern as the instance forEmployee:
instance Term a => Term [a] where

gmapT f [] = []
gmapT f (x:xs) = f x : f xs

Notice the “f xs” for the tail — not “gmapT f xs”; gmapT tra-
verses one layer only, unlike the common recursivemap function.

3.3 Recursive traversal
Even thoughgmapT has this one-layer-only behaviour, we can syn-
thesise a variety of recursive traversals from it. Indeed, as we shall
see, it is precisely its one-layer behaviour that makes thisvariety
easy to capture.

For example, theeverywhere combinator applies a transformation
to every node in a tree:
-- Apply a transformation everywhere, bottom-up
everywhere :: Term a

=> (forall b. Term b => b -> b)
-> a -> a

everywhere f x = f (gmapT (everywhere f) x)
We can read this function as follows: first applyeverywhere f to
all the children ofx, and then applyf to the result. The recursion is
in the definition ofeverywhere, not in the definition ofgmapT.2

The beautiful thing about building a recursive traversal strategy
out of non-recursivegmapT is that we can build many different
strategies using a single definition ofgmapT. As we have seen,
everywhere works bottom-up, becausef is applied aftergmapT
has processed the children. It is equally easy to do top-down:
-- Apply a transformation everywhere, top-down
everywhere’ :: Term a

=> (forall b. Term b => b -> b)
-> a -> a

everywhere’ f x = gmapT (everywhere’ f) (f x)
In the rest of this paper we will see many different recursivestrate-
gies, each of which takes a line or two to define.

This extremely elegant way of building arecursivetraversal in two
steps — first define aone-layermap, and then tie the recursive
knot separately — is well-known folk lore in the functional pro-
gramming community, e.g., when dealing with ana- and catamor-
phisms for regular data types such as lists [22]. For lack of better-
established terminology we call it “the non-recursive map trick”,
and review it in Section 9.2.

3.4 Another example
Lest we get fixated onincrease here is another example that uses
the same design pattern. Let us write a function that flattensout a
named departmentd; that is, it takes alld’s sub-units and makes
them part ofd’s parent department:
flatten :: Name -> Company -> Company
flatten d = everywhere (mkT (flatD d))

flatD :: Name -> Dept -> Dept
flatD d (D n m us)

= D n m (concatMap unwrap us)
where

unwrap :: SubUnit -> [SubUnit]
unwrap (DU (D d’ m us)) | d==d’ = PU m : us
unwrap u = [u]

2In “point-free” notation:
everywhere f = f . gmapT (everywhere f)



The functionflatD does the interesting work on a department: it
looks at each of its sub-units,u, appliesunwrap to get a list of units
(usually the singleton list[u]), and concatenates the results.3 When
unwrap sees the target department (d == d’) it returns all its sub-
units. The managerm is not fired, but is turned into a plain work-
ing unit,PU m (presumably subject to drastic subsequent salary de-
crease).

Again, this isall the code for the task. The one-line function
flatten uses exactly the same combinatorseverywhere andmkT
as before to “lift”flatD into a function that is applied everywhere
in the tree.

Furthermore, if the data types change – for example, a new form
of SubUnit is added – then the per-data-type boilerplate code must
be re-generated, but the code forincrease and flatten is un-
changed. Of course, if the number of fields in aDept or SubUnit
changed, thenflatD would have to change too, becauseflatD
mentions theDU andD constructors explicitly. But that is not unrea-
sonable; if aDept’s units were split into two lists, say, one for peo-
ple and one for sub-departments, the algorithm really wouldhave
to change.

3.5 Summary
We have now completed an initial description of our new design
pattern. To summarise, an application is built from three chunks of
code:
Programmer-written: a short piece of code for the particular ap-

plication. This typically consists of (a) a code snippet to do the
real work (e.g.,incS) and (b) the application of some strategy
combinators that lift that function to the full data type, and
specify the traversal scheme.

Mechanically-generated: for each data type, twoinstance dec-
larations, one for classTypeable and one for classTerm. The
former requires a fixed amount of code per data type (see Sec-
tion 8). The latter requires one line of code per constructor,
as we have seen. Because the two kinds ofinstance decla-
rations take a very simple, regular form, they can readily be
generated mechanically.

Library: a fixed library of combinators, such asmkT and
everywhere. The programmer can readily extend this library
with new forms of traversal.

One way to generate theinstance declarations is to use the DrIFT
pre-processor [38]. Furthermore, derivable type classes [11] (al-
most) can do the job, or Template Haskell [30]. The software dis-
tribution that comes with the paper includes a customised version
of DrIFT. However, mechanical support is not absolutely necessary:
writing this boilerplate code by hand is not onerous and it still pays
off because it is a one-off task.

The rest of the paper consists of an elaboration and generalisation of
the ideas we have presented. The examples we have seen so far are
all generictransformationsthat take aCompany and produce a new
Company. It turns out that two other forms of generic algorithms
are important: genericqueries(Section 4) andmonadic transfor-
mations(Section 5). After introducing these forms, we pause to
reflect and generalise on the ideas (Section 6), before showing that
the three forms of algorithm can all be regarded as a form of fold
operation (Section 7). Lastly, we return to the type-safe cast opera-
tor in Section 8.

3concatMap :: (a->[b]) -> [a] -> [b] maps a function
over a list and concatenates the results.

4 Queries
Thus far we have concentrated on generictransformations. We re-
call the corresponding type scheme:

forall a. Term a => a -> a
There is a second interesting class of generic programs thatwe call
generic queries. A generic query has a type of the following form:

forall a. Term a => a -> R
HereR is some fixed result type. For example, suppose we wanted
to compute the salary bill of the company; we would need a function
of the following type:
salaryBill :: Company -> Float

HereFloat is the fixed result typeR.

4.1 Implementing queries
Our general approach is exactly the same as before: we use type ex-
tension to lift the interesting part of the function into a polymorphic
function; for each data types we give a single overloaded traversal
function; and we buildsalaryBill from these two pieces. Here is
the code, which looks very similar to that forincrease:
salaryBill :: Company -> Float
salaryBill = everything (+) (0 ‘mkQ‘ billS)

billS :: Salary -> Float
billS (S f) = f

The interesting part ofsalaryBill is the functionbillS that ap-
plies to aSalary. To lift billS to arbitrary types, we usemkQ, a
cousin ofmkT:
mkQ :: (Typeable a, Typeable b)

=> r -> (b -> r) -> a -> r
(r ‘mkQ‘ q) a = case cast a of

Just b -> q b
Nothing -> r

That is, the query(r ‘mkQ‘ q) behaves as follows when applied to
an argumenta: if a’s type is the same asq’s argument type, useq to
interrogate a; otherwise return the default valuer. To illustrate, here
are some examples of usingmkQ in an interactive session (recall that
ord has typeChar -> Int):
Prelude> (22 ‘mkQ‘ ord) ’a’
97
Prelude> (22 ‘mkQ‘ ord) ’b’
98
Prelude> (22 ‘mkQ‘ ord) True
22

The next step is to extend theTerm class with a functiongmapQ that
applies the specified query function and makes a list of the results:
class Typeable a => Term a where

gmapT :: (forall b. Term b => b -> b) -> a -> a
gmapQ :: (forall b. Term b => b -> r) -> a -> [r]

The instances ofgmapQ are as simple as those forgmapT:
instance Term Employee where

gmapT = ... as before ...
gmapQ f (E p s) = [f p, f s]

instance Term a => Term [a] where
gmapT = ... as before ...
gmapQ f [] = []
gmapQ f (x:xs) = [f x, f xs]

instance Term Bool where
gmapT x = ... as before ...
gmapQ x = []

Just as withgmapT, notice that there is no recursion involved (it is a
one-layer operator), and that the function has a rank-2 type.



Now we can usegmapQ to build theeverything combinator that
performs the recursive traversal. Like any fold, it needs anoperator
k to combine results from different sub-trees:
-- Summarise all nodes in top-down, left-to-right
everything :: Term a

=> (r -> r -> r)
-> (forall a. Term a => a -> r)
-> a -> r

everything k f x
= foldl k (f x) (gmapQ (everything k f) x)

Here we see thateverything processes the children ofx, giving a
list of results; and then combines those results using the ordinary list
functionfoldl, with the operatork as the combiner. The(f x) is
the result of applying the query tox itself, and that result is included
in thefoldl. And that concludes the definition ofsalaryBill.

4.2 Other queries
By changing the query function and combining operator we can
easily query for a single value rather than combining valuesfrom
all nodes in the tree. For example, here is how to extract a named
department from the company data structure:
find :: Name -> Company -> Maybe Dept
find n = everything orElse (Nothing ‘mkQ‘ findD n)

findD :: String -> Dept -> Maybe Dept
findD n d@(D n’ _ _)

| n == n’ = Just d
| otherwise = Nothing

orElse :: Maybe a -> Maybe a -> Maybe a
x ‘orElse‘ y = case x of

Just _ -> x
Nothing -> y

The use offoldl in everything means thatfind will find the
leftmost, shallowest department with the specified name. Itis easy
to make variants ofeverything that would find the right-most,
deepest, or whatever. Laziness plays a role here: once a department
of the specified name has been found, traversal will cease.

5 Monadic transformation
As well as transformations (Section 3) and queries (Section4) there
is a third useful form of generic algorithm, namely amonadic trans-
formation. For example, suppose we wanted to process aCompany
structure discarding the oldSalary values, and filling in new ones
by looking up the employee’s name in an external database. That
means there is input/output involved, so the function must have type
lookupSalaries :: Company -> IO Company

This type does not fit the scheme for generic transformationsor
queries, so we have to re-run the same development one more time.
First, we need a functionmkM to construct basic monadic transfor-
mations:
mkM :: (Typeable a, Typeable b,

Typeable (m a), Typeable (m b),
Monad m)

=> (b -> m b) -> a -> m a
mkM f = case cast f of

Just g -> g
Nothing -> return

The type ofmkM looks somewhat scary, but it simply explains all
the type-representation constraints that are needed for type-safe
cast. Then we need to extend once more the classTerm to support
monadic traversal:
class Typeable a => Term a where

gmapT :: ... as before ...

gmapQ :: ... as before ...

gmapM :: Monad m
=> (forall b. Term b => b -> m b)
-> a -> m a

The instances forgmapM are just as simple as before; they use
Haskell’sdo notation for monadic composition:
instance Term Employee where

...
gmapM f (E p s) = do p’ <- f p

s’ <- f s
return (E p’ s’)

instance Term a => Term [a] where
...
gmapM f [] = return []
gmapM f (x:xs) = do x’ <- f x

xs’ <- f xs
return (x’:xs’)

Now we can make aneverywhereM combinator:
everywhereM :: (Monad m, Term a)

=> (forall b. Term b => b -> m b)
-> a -> m a

everywhereM f x = do x’ <- gmapM (everywhereM f) x
f x’

Finally, we can writelookupSalaries as follows:
lookupSalaries = everywhereM (mkM lookupE)

lookupE :: Employee -> IO Employee
lookupE (E p@(P n _) _)

= do { s <- dbLookup n; return (E p s) }

dbLookup :: Name -> IO Salary
-- Lookup the person in the external database

The obvious question is this: will each new application require a
new variant ofgmap? We discuss that in Section 7. Meanwhile, we
content ourselves with two observations. First,gmapT is just a spe-
cial case ofgmapM, using the identity monad. (In fact,gmapQ can
also be encoded usinggmapM, although not so directly.) Second,
one might wonder whether we need a monadic form ofgmapQ, by
analogy withgmapT/gmapM. No, we do not: a monadicqueryis just
a special case of an ordinary query. To see that, we need only recog-
nise thatMaybe is a monad, so thefind operation of Section 4.2 is
really performing a monadic query.

6 Refinements and reflections
Having introduced the basics, we pause to reflect on the ideasa little
and to make some modest generalisations.

6.1 An aside about types
It is worth noticing that the type ofeverywhere could equivalently
be written thus:
everywhere :: (forall b. Term b => b -> b)

-> (forall a. Term a => a -> a)
by moving the implicitforall a inwards. The nice thing about
writing it this way is that it becomes clear thateverywhere is a
generic-transformation transformer. We might even write this:
type GenericT = forall a. Term a => a -> a
everywhere :: GenericT -> GenericT

The same approach gives a more perspicuous type foreverything:
type GenericQ r = forall a. Term a => a -> r
everything :: (r -> r -> r)

-> GerericQ r -> GerericQ r



From a type-theoretic point of view, these type signatures are iden-
tical to the original ones, and GHC supports such isomorphisms
directly. In particular, GHC allows aforall in type synonym
declarations (such asGenericT) and allows aforall to the right
of a function arrow (which happens when the type synonym is ex-
panded).

6.2 Richer traversals
Sometimes we need to combine generic queries and transforma-
tions. For example, suppose we want to increase the salariesof
everyone in a named department, leaving everyone else’s salary un-
changed. The main function is a generic transformation,incrOne,
but it uses the services of a generic queryisDept:
incrOne :: Name -> Float -> GenericT
incrOne n k a

| isDept n a = increase k a
| otherwise = gmapT (incrOne d k) a

isDept :: Name -> GenericQ Bool
isDept n = False ‘mkQ‘ isDeptD n

isDeptD :: Name -> Dept -> Bool
isDeptD n (D n’ _ _) = n==n’

incrOne first tests its argument to see whether it is the targeted de-
partment but, becauseincrOne is agenerictransformation, it must
use a generic query,isDept to make the test. The latter is built just
as before usingmkQ. Returning toincrOne, if the test returnsTrue,
we callincrease (from Section 3) on the department4; otherwise
we applyincrOne recursively to the children.

In this case we did not use one of our traversal combinators
(everything, everywhere, etc.) to do the job; it turned out to
be more convenient to write the recursion explicitly. This is yet
another example of the benefit of keeping the recursion out ofthe
definition of thegmap functions.

6.3 Identifying the interesting cases
Our generic programming technique encourages fine type distinc-
tions via algebraic data types as opposed to anonymous sums and
products. The specific data types usually serve for the identification
of interesting cases in a generic algorithm. For example, weused a
separate data type forSalary:
data Salary = S Float

If we had instead used an ordinaryFloat instead ofSalary, and
if the Person type also included aFloat (the person’s height, per-
haps) theincrease of Section 3 might end up increasing everyones
height as well as their salary!

If this happens, one solution is to add more type distinctions, i.e.,
declarations of datatypes and newtypes as opposed to type syn-
onyms. Another is simply to include some more context to the
program in terms of the intercepted patterns. Thus, insteadof us-
ing mkT to build special case forFloat, build a special case for
Employee:
increase k = everywhere (mkT (incE k))

incE :: Float -> Employee -> Employee
incS k (E p s) = E p (s * (1+k))

There is a dual problem, which is persuading the traversal functions
to stop. The programmer might want to cut off traversal explicitly at
certain kinds of nodes. In the case of a transformation, suchcut-offs
are useful to restrict the extent of changes in the tree. For example,

4Actually, Section 3 gave a monomorphic type toincrease,
whereas we need it to have a generic type here, so we would have
to generalise its type signature.

we could further parameteriseeverywhere by a generic query that
returnsTrue if the traversal should not visit the sub-tree:
everywhereBut :: GenericQ Bool

-> GenericT -> GenericT
everywhereBut q f x

| q x = x
| otherwise = f (gmapT (everywhereBut q f) x)

increase k = everywhereBut names (mkT (incS k))

names :: GenericQ Bool
names = False ‘mkQ‘ isName

isName :: String -> Bool
isName n = True

Writing such “stop conditions” is useful not only to restrict the cov-
erage of traversal, but also to avoid “fruitless traversal”. For exam-
ple, theincrease function will unnecessarily traverse every char-
acter of the department’s name, and also of each person’s name.
(In Haskell, aString is just a list ofChar.) From the point of
view of the generic function, it is entirely possible that there might
be aSalary buried inside the name. Writing efficiency-directed
stop conditions is undoubtedly tiresome, and is a shortcoming of
our approach. It can only be avoided by an analysis of the data-
type structure, which is certainly feasible, but only with compiler
support.

6.4 Compound type extension
Continuing the same example, what if there happened to be twoor
more uninteresting types, that we wanted to refrain from traversing?
Then we would need a generic query that returnedTrue for any of
those types, andFalse otherwise. Compound type extensions like
this are the topic of this section.

The general question is this: given a generic query, how can we
extend it with a new type-specific case? We needextQ, a cousin of
mkQ:
extQ :: (Typeable a, Typeable b)

=> (a -> r) -> (b -> r) -> (a -> r)
(q ‘extQ‘ f) a = case cast a of

Just b -> f b
Nothing -> q a

We can now build a generic query that has arbitrarily many special
cases simply by composingextQ. There are similar type-extension
functions,extT andextM, that allow a generic transformation to
have an arbitrary number of type-specific cases.

Here is a more interesting example. Suppose we want to generate
an association list, giving the total head-count for each department:
headCount :: Company -> [(Name,Int)]
headCount c = fst (hc c)

type HcInfo = ([(Name,Int)], Int)

hc :: GenericQ HcInfo

The main generic function,hc, returns anHcInfo; that is, a pair of
the desired association list together with the total head count of the
sub-tree. (Returning a pair in this way is just the standard tupling
design pattern, nothing to do with generic programming.) First we
define the the type-specific cases for the two typesDept andPerson
of interest:
hcD :: Dept -> [HcInfo] -> HcInfo
hcD (D d _ us) kids = ((d,n):l, n)

where
(l,n) = addResults kids

hcP :: Person -> [HcInfo] -> HcInfo
hcP p _ = ([], 1)



addResults :: [HcInfo] -> HcInfo
addResults rs = (concat (map fst rs),

sum (map snd rs))

Each of them takes a list ofHcInfo, the head-count information for
the child nodes (irrelevant for aPerson), and the node itself, and
builds the head-count information for the node. For a personwe
return a head-count of 1 and an empty list of departments; while for
a department we add the department to the list of sub-departments,
plus one for the manager herself. Now we can combine these func-
tions using a new traversal combinatorqueryUp:
queryUp :: (forall a. Term a => a -> [r] -> r)

-> GenericQ r
queryUp f x = f x (gmapQ (queryUp f) x)

hc :: GenericQ HcInfo
hc = queryUp (hcG ‘extQ‘ hcP ‘extQ‘ hcD)

hcG :: Term a => a -> [HcInfo] -> HcInfo
hcG node kids = addResults kids

HerequeryUp first deals with the children (via the call togmapQ),
and then applies the specified function to the nodex and the query
results of the children. The main function,hc, callsqueryUp with a
function formed from a generic casehcG, with two type extensions
for hcP andhcD. As an aside, we are using generic queries with a
higher-order result type here, namely[r]->r.

6.5 Strange types
Programming languages like ML and Haskell permit rather free-
wheeling data type definitions. Algebraic data types can be mu-
tually recursive, parameterised (perhaps over higher-kinded type
variables), and their recursion can be non-uniform. Here are some
typical examples (the last one is taken from [3]):
data Rose a = MkR a [Rose a]
data Flip a b = Nil | Cons a (Flip b a)

data E v = Var v | App (E v) (E v) | Lam (E (Inc v))
data Inc v = Zero | Succ v

For all of these theTerm instance declaration follow the usual form.
For example, here is theTerm instance forRose:
instance Term a => Term (Rose a) where

gmapT f (MkR a rs) = MkR (f a) (f rs)
gmapQ f (MkR a rs) = [f a, f rs]
gmapM f (MkR a rs) = do a’ <- f a

rs’ <- f rs
return (MkR a’ rs’)

Components of algebraic data types can also involve local quanti-
fiers and function types. The former do not necessitate any specific
treatment. As for the latter, there is of course no extensional way
to traverse into function values unless we meant to traverseinto the
source code of functions. However, encountering functionsin the
course of traversal does not pose any challenge. We can treatfunc-
tions as atomic data types, once and for all, as shown here:
instance Term (a -> b) where

gmapT f x = x
gmapQ f x = []
gmapM f x = return x

Type-safe cast copes with all these strange types as well because it
is not at all sensitive to the structure of the datatype components.
TheTypeable instances deal with thenamesof the datatypes, and
the names of their parameter types or type constructors.

7 Generalisinggmap
We have seen three different maps,gmapT, gmapQ, andgmapM. They
clearly have a lot in common, and have a rich algebra. For example:

gmapT id = id
gmapT f . gmapT g = gmapT (f . g)
gmapQ f . gmapT g = gmapQ (f . g)

Two obvious questions are these: (a) might a new applicationre-
quire a new sort ofgmap? (b) can we capture all three as special
cases of a more general combinator?

So far as (a) is concerned, any generic function must have type

Term a => a -> F(a)
for some type-level functionF. We restrict ourselves to type-
polymorphic functionsF ; that is,F can return a result involvinga,
but cannot behave differently depending ona’s (type) value. Then
we can see thatF can be the identity function (yielding a generic
transformation), ignorea (yielding a query), or return some com-
pound type involvinga. In the latter case, we viewF(a) as the
application of a parameterised type constructor. We covered the
case of a monad viagmapM but we lack coverage for other type con-
structors. So indeed, a generic function with a type of the form

Term a => a -> (a,a)
is not expressible by any of ourgmap functions.

But all is not lost: the answer to question (b) is “yes”. It turns out
that all the generic maps we have seen are just special instances of
a more fundamental scheme, namely a fold over constructor appli-
cations. At one level this comes as no surprise: from dealingwith
folds for lists and more arbitrary datatypes [22], it is known that
mapping can be regarded as a form of folding. However,it is ab-
solutely not straightforward to generalise the map-is-a-fold idea to
the generic setting, because one usually expresses map as a fold by
instantiating the fold’s arguments in a data-type-specificway.

In this section we show that by writing fold in a rather cunning
way it is nevertheless possible to express various maps in terms
of a single fold in a generic setting. Before diving in, we remark
that this section need not concern the application programmer: our
threegmaps have been carefully chosen to match a very large class
of applications directly.

7.1 The generic fold
We revise the classTerm for the last time, adding a new operator
gfoldl. We will be able to define all threegmap operators using
gfoldl but we choose to leave them as methods of the class. Doing
so means that when giving an instance forTerm the programmer
may, if she wishes, definegmapT etc. directly, as we have done
earlier in the paper.
class Typeable a => Term a where
gmapT :: (forall b. Term b => b -> b) -> a -> a
gmapQ :: (forall b. Term b => b -> r) -> a -> [r]
gmapM :: Monad m

=> (forall b. Term b => b -> m b) -> a -> m a

gfoldl :: (forall a b. Term a => w (a -> b)
-> a -> w b)

-> (forall g. g -> w g)
-> a -> w a

Trying to understand the type ofgfoldl directly can lead to brain
damage. It is easier to see what the instances look like. Hereis the
instance for the typesEmployee andSubUnit:
instance Term SubUnit where

gfoldl k z (PU p) = z PU ‘k‘ p
gfoldl k z (DU d) = z DU ‘k‘ d



instance Term Employee where
gfoldl k z (E p s) = (z E ‘k‘ p) ‘k‘ s

Notice thatthe constructor itself(E, or PU etc.) is passed to thez
function as a base case; this is the key difference from a vanilla fold,
and is essential to generic definitions ofgmapT etc. usinggfoldl.
In particular:

gfoldl ($) id x = x

That is, instantiatingz to the identity function, andk to function
application($) simply rebuilds the input structure. That is why we
chose a left-associative fold: because it matches the left-associative
structure of function application.

7.2 Usinggfoldl
We will now show thatgmapT and friends are just special instances
of gfoldl. That idea is familiar from the world of lists, wheremap
can be defined in terms offoldr. Looking at an instance helps to
make the point:
gmapT f (E p s) = E (f p) (f s)
gfoldl k z (E p s) = (z E ‘k‘ p) ‘k‘ s

How can we instantiatek andz so thatgfoldl will behave like
gmapT? We needz to be the identity function, whilek should be
defined to applyf to its second argument, and then apply its first
argument to the result:
gmapT f = gfoldl k id

where
k c x = c (f x)

Operationally this is perfect, but the types are not quite right.gmapT
returns a value of typea while gfoldl returns a(w a). We would
like to instantiatew to the identity function (at the type level), ob-
taining the following specialised type forgfoldl:
gfoldl :: (forall a b. Term a => (a -> b)

-> a -> b)
-> (forall g. g -> g)
-> a -> a

However, functions at the type level make type inference much
harder, and in particular, Haskell does not have them. The solu-
tion is to instantiatew to the type constructorID accompanied by
some wrapping and unwrapping:
newtype ID x = ID x

unID :: ID a -> a
unID (ID x) = x

gmapT f x = unID (gfoldl k ID x)
where
k (ID c) x = ID (c (f x))

TheID constructor, and its deconstructorunID are operationally no-
ops, but they serve to tell the type checker what to do. The encoding
of gmapM is very similar to the one forgmapT. We usedo notation
instead of nested function application. The type ofgmapM does not
require any wrapping because the monad type constructor directly
serves for the parameterw. That is:
gmapM f = gfoldl k return

where
k c x = do c’ <- c

x’ <- f x
return (c’ x’)

The last one,gmapQ, is a little more tricky because the structure
processed bygfoldl is left-associative, whereas the structure of
the list returned bygmapQ is right-associative. For example:
gmapQ f (E p s) = f p : (f s : [])
gfoldl k z (E p s) = (z E ‘k‘ p) ‘k‘ s

There is a standard way to solve this, using higher-order functions:

gmapQ f = gfoldl k (const id) []
where
k c x rs = c (f x : rs)

However, again we must do some tiresome type-wrapping to ex-
plain to the type inference engine why this definition is OK:
newtype Q r a = Q ([r]->[r])
unQ (Q f) = f

gmapQ f x = unQ (gfoldl k (const (Q id)) x) []
where
k (Q c) x = Q (\rs -> c (f x : rs))

Notice that(Q r) is a constant function at the type level; it ignores
its second parametera. Why? Because a query returns a type that
is independent of the type of the argument data structure.

7.3 Summary
We contend that one-layer folding is the fundamental way to per-
form term traversal in our framework. This section has shownthat
thegmap functions can all be defined in terms of a single function
gfoldl. Lest the involved type-wrapping seems onerous, we note
that it occursonly in the definitions of thegmap functions in terms
of gfoldl. The programmer need never encounter it. Thegmap
definitions in terms ofgfoldl might not be very efficient because
they involve some additional amount of higher-order functions. So
the programmer or the implementor of the language extensionhas a
choice. Either thegmap operators are defined directly per datatype,
or they are defined in terms ofgfoldl once and for all via the
shown “default” declarations.

8 Type-safe cast
Our entire approach is predicated on the availability of a type-safe
cast operator, which in turn is closely related to intensional poly-
morphism and dynamic typing. We will discuss such related work
in Section 9.3. In fact, it is well-known folk lore in the Haskell com-
munity that much of the functionality ofcast can be programmed
in standard Haskell. Strangely, there is no published description
of this trick, so we review it here, giving an encoding that can be
regarded as a reference implementation.

8.1 TheTypeable class
The key idea is to refine the type classTypeable, which was previ-
ously assumed to be abstract, as follows:
class Typeable a where

typeOf :: a -> TypeRep
The overloaded operationtypeOf takes a value and returns a run-
time representation of its type. Here is one possible implementation
of theTypeRep type, and some instances:
data TypeRep = TR String [TypeRep]

instance Typeable Int where
typeOf x = TR "Prelude.Int" []

instance Typeable Bool where
typeOf x = TR "Prelude.Bool" []

instance Typeable a => Typeable [a] where
typeOf x = TR "Prelude.List" [typeOf (get x)]

where
get :: [a] -> a
get = undefined

instance (Typeable a, Typeable b)
=> Typeable (a->b) where

typeOf f = TR "Prelude.->" [typeOf (getArg f),
typeOf (getRes f)]

where



getArg :: (a->b) -> a
getArg = undefined

getRes :: (a->b) -> b
getRes = undefined

Notice thattypeOf never evaluates its argument. In particular, the
call (get x) in the list instance will never be evaluated5; it simply
serves as a proxy, telling the compiler the type at which to instanti-
ate the recursive call oftypeOf, namely to the element type of the
list. If Haskell had explicit type arguments,typeOf could dispense
with its value argument, with its calls using type application alone.6

8.2 Definingcast usingtypeOf
Type-safe cast is easy to implement giventypeOf, plus a small
Haskell extension:
cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x = r

where
r = if typeOf x == typeOf (get r)

then Just (unsafeCoerce x)
else Nothing

get :: Maybe a -> a
get x = undefined

Here we check whether the argumentx and resultr have the same
type representation, and if so coerce the one into the other.Here,
unsafeCoerce is an extension to Haskell, with the following type:
unsafeCoerce :: a -> b

It is easy to implement: operationally it is just the identity function.
It is, of course, just as unsafe as its name implies, and we do not
advocate its wide-spread use. Rather, we regardunsafeCoerce as
an implementation device to implement a safe feature (cast); many
language implementations contain a similar trap-door.

8.3 What a mess?
At this point the reader may be inclined to throw up his hands and
declare that if this paper requiresunsafeCoerce, andinstance
declarations with magic strings that must be distinct, thenit has no
place in a language like Haskell. But note that the above scheme
is meant by us as a reference implementation as opposed to a pro-
gramming technique.

That is, the compiler should provide direct support for the class
Typeable, so that its instance for each data type is automatically
generated by the compiler. The programmer does not instantiate
the class him- or herself. Furthermore,cast should be provided
as a primitive — it may beimplementedinside the system library
with some kind of low-level coercion, but that is invisible to (and
inaccessible to) the application programmer. With this degree of
compiler support, the system is indeed type-safe.

So this section does not present a programming technique forthe
user. Rather, it shows that compiler support forcast does not
require some mysterious fiddling with runtime data representa-
tions. Instead, somewhat surprisingly, it can be cleanly imple-
mented using Haskell’s type-class framework with some readily-
generated simple instance declarations. Furthermore, albeit as an
unsavoury stop-gap measure, it is a real advantage to be ableto
prototype the system without requiring any compiler support ex-
ceptunsafeCoerce.

5The valueundefined has typeforall a.a in Haskell.
6GHC supports scoped type variables, so a nicer way to write

the list instance oftypeOf is this:
TR "Prelude.List" [typeOf (undefined :: a)]

One might worry about efficiency, becausecast involves compar-
ing TypeRep data structures. That cost, however, is not fundamen-
tal. TheTypeRep structures can readily be hash-consed (especially
if there is direct compiler support) so that they can be compared in
constant time. Again, this is the business of the library writer (or
even compiler implementor) not the application programmer.

9 Alternative approaches
Generic programming has received a great deal of attention,and we
review the work of others in this section. Before we do, it is worth
mentioning that one very brutal approach to generic programming
lies readily to hand, namelyusing a universal data type, such as:
data Univ = I Int | S String | ... etc. ...

| B ConstrName [Univ]
type ConstrName = String

A generic program works by (a) converting (embedding) the input
data structure toUniv, (b) traversing the universal data structure,
and (c) converting (projecting) the result back to the original type.
This approach has the merit of simplicity, but it is inefficient, and
(worse) completely untyped. In step (b) there is no static check
that, when matching on a constructor named"Person", the correct
number or type of fields are matched. There are ways to improve
the type safety and efficiency of this approach; for example,one can
use an abstract datatype for generic functions to separate typed and
untyped code [17]. However, we concentrate on statically-typed
approaches in the rest of this section.

9.1 Rank-2 types
The Hindley-Milner type system is gracefully balanced on a cusp
between expressiveness and decidability. A polymorphic type may
be quantified only at the outermost level — this is called arank-1
type— but in exchange a type inference engine can find the most
general type for any typeable program, without the aid of anytype
annotations whatsoever.

Nevertheless, higher-ranked types are occasionally useful. A good
example is the type ofbuild, the list-production combinator that is
central to the short-cut deforestation technique [6]. Its type is:
build :: forall a. (forall b. (a->b->b) -> b -> b)

-> [a]
Another example isrunST, the combinator that encapsulates a state-
ful computation in a pure function [19]:
runST :: forall a. (forall s. ST s a) -> a

It is well known that type inference for programs that use higher-
ranked types is intractable [16]. Nevertheless, it is not only tractable
but easy if sufficient type annotations are given [24]. The two
Haskell implementations GHC and Hugs support data constructors
with rank-2 types; the type inference problem is easier herebecause
the data constructor itself acts as a type annotation. However that
would be very inconvenient here:gmapT is not a data constructor,
and it would require tiresome unwrapping to make it so.

So in fact GHC uses a type inference algorithm that permits any
function to have a type of arbitrary-rank type, provided sufficient
type annotations are given. The details are beyond the scopeof this
paper, but are given in [31]. We believe that thegmap family of
functions offers further evidence of the usefulness of rank-2 types
in practical programming.

9.2 Generic traversal
Polytypic programming

The core idea underlying polytypic programming [15, 14, 10]is
to define a generic function by induction on the structure of an ar-
gument type or the result type of a function. Induction is usually



supported by a corresponding language extension: the function def-
inition has cases for sums, products, and others. This approach ini-
tially leads topurely-generic functions; that is, ones driven entirely
by the structure of the type. Examples include serialisation and its
inverse, comparison operations, and hashing. Unfortunately, these
are just about theonlypurely-generic operations, and our own view
is that purely-generic programming is too restrictive to beuseful.

Thus motivated, customisation of generic programs is addressed in
the Generic Haskell program. In [4], techniques are discussed to
extend a polytypic function with cases for a particular construc-
tor or a type. Generic Haskell is a very substantial extension to
Haskell, whereas our proposal is much more lightweight and better
integrated with ordinary functional programming. Furthermore, in
Generic Haskell, a generic function is not a first-class citizen. That
is, one cannot write generic functions operating on other generic
functions, as our traversal combinators (e.g.,everywhere) require.
Also, (run-time and nominal) type-safe cast is alien to polytypic
programming. Using techniques such as those in [4], one canen-
codetraversals as opposed to using our combinator style.

Derivable type classes [11] is another extension of Haskellto sup-
port generic programming. The idea here is that a generic function
is just a template that specifies how to generate aninstance dec-
laration for the generic function for each data type. It is easy to
over-ride this template for specific types. Again, derivable type-
classes are oriented towards structural induction (not nominal anal-
ysis) over types; recursion is built into each generic function; and
each new generic function requires a new class. Derivable type
classes (combined with rank-2 types) are sufficient to definethe
gmap family of functions or thegfoldl function, with a modest
amount of encoding. However, derivable type classes are notsuit-
able to define our nominal type case because of their bias towards
structural induction.

Generalised folds

It is a well-established idea that maps and folds can be defined for
all kinds of datatypes, even for systems of datatypes [22, 29, 23].
The inherent assumption is here that recursion into compound terms
is performedby the fold operation itself. This sets this idea apart
from our simpler and yet more general approach where layer-wise
traversal is favoured. This way, we allow the programmer to wire
up recursion in any way that is found convenient. Besides thean-
ticipated recursion, generalised folds suffer from another problem
articulated in [18]: if larger systems of datatypes are considered, it
is impractical to enumerate all the ingredients for foldingby hand.
In effect, this is another instance of boilerplate: most ingredients
follow a certain scheme, only few ingredients should be provided
by the programmer. To this end,updatablefold algebras were pro-
posed in [18]. The present development generalises (updatable)
generalised folds in several dimensions. Firstly, type extension can
operate at the type level whereas fold algebras are updated at the
constructor level. Secondly, generic traversal allows to define all
kinds of traversal schemes as opposed to simple catamorphicor
paramorphic fold. Thirdly, the fold algebra approach suffers from a
closed-world assumption; adding new data types is not straightfor-
ward. No such assumption is present in our present development.

The non-recursive map trick

The non-recursive map trick (introduced in Sections 3.2 and3.3)
has been known in the functional programming community for
some time, e.g., in the sense of programming with functors [22, 28].
In this approach, for every recursive data type,Tree say, one defines
an auxiliary type,Tree’ that is the functor forTree:
data Tree a = Leaf a | Fork (Tree a) (Tree a)
data Tree’ t a = Leaf’ a | Fork’ t t

Now the following type isomorphism holds:

Tree’ (Tree a) a � Tree a

Recursive traversals can then be defined as recursive functions in
terms of a one-layer functorialmap. To use this approach directly
for practical programming, one needs to write functions to convert
to and from between these the above isomorphic types, and thesit-
uation becomes noticeably more complicated when there are many
mutually-recursive types involved [32, 28], and breaks down alto-
gether when the recursion is non-uniform [25]:
data Seq a = Nil | Cons a Seq (a,a)

In contrast, our approach does not require an auxiliary datatype,
works fine for arbitrary datatypes. and it also copes with systems
of mutually recursive datatypes. This is a major improvement over
previous work, and this makes the technique more likely to beused
in practice. In an untyped setting, the idea to map over the imme-
diate children of a term is rather straightforward, e.g., inProlog.
Indeed, it seems that a very similar technique has been used in Lisp
community already for quite some time.7

The idea of building a library of combinators that facilitate first-
class tree-traversalstrategies(e.g. top-down, bottom-up, repeat-
until, leftmost-first, etc.) in terms of one-layer traversal steps is
also well established in the term-rewriting community. This idea
has seen a flurry of recent activity. There are three main approaches
to the combinator style. One is to define a new language for strate-
gic programming. A prime example is the untyped language Strat-
ego [33]. Another approach that can also be used to support strate-
gies in an existing functional language is to transform the input
data into a single universal data type, and write generic strate-
gies over that universal data type; a good example is the HaXML
combinator library [35]. Yet another approach that works partic-
ularly well with functional programming is to model strategies as
abstract datatypes. The implementations of the strategy combina-
tors can then hide some encoding needed to present “strategies as
functions” to the programmer. This approach underlies theStra-
funskiprogramme.8 All these streams of work describe a rich li-
brary of strategy combinators. Our new contribution isto show how
the strategic-combinator approach to traversal can be smoothly ac-
commodated in a typed functional language, where term traversals
are ordinary functions on the user-defined data types. Also, the em-
ployment of rank-2 types and the identification of the fundamental
folding operator improves on the encodings and combinator suites
in previous work.

The visitor pattern

In object-oriented programming, thevisitor pattern is the classic
incarnation of recursive traversal. In fact, though, an instance of
the visitor pattern is rather like the problematicincrease that we
started with in Section 2: the visitor requires a case for each data
type (say, class), and the traversal is mixed up with the processing
to be done to each node [26]. Many variations on the basic visitor
pattern have been proposed. Palsberg suggests a more generic alter-
native, theWalkabout class, based on reflection; its performance is
poor, and Palsberg offers an interesting discussion of other design
choices [26]. A generative approach to flexible support for pro-
gramming with visitors is suggested by Visser [34] accompanied
with a discussion of other generative approaches. Given a class
hierarchy, an interface for visitor combinators is instantiated very
much in the style of strategic programming (see above). Nodepro-
cessing and recursive traversal is effectively separated,and arbitrary
traversal schemes can be defined.

7Personal communication Alex Aiken.
8http://www.cs.vu.nl/Strafunski



Lieberherr’s et al.’sadaptive programmingoffers a high-level ap-
proach to traversal of object structures [21] when comparedto visi-
tors. This style assumes primitives to specify pieces of computation
to be performed along paths that are constrained by startingnodes,
nodes to be passed, nodes to be by-passed, and nodes to be reached.
Adaptive programs are typically implemented by a language exten-
sion, a reflection-based API, or by compilation to a visitor.

9.3 Type-safe cast
There are two main ways to implement type-safe cast, each with an
extensive literature: intensional type analysis; or dynamic typing.

Intensional type analysis enables one to write functions that depend
on the (run-time) type of a value [8, 37]. To this end, one usesa
typecase construct to examine the actual structure of a type pa-
rameter or the type of a polymorphic entity, withcase alternatives
for sums, products, function types, and basic datatypes. This struc-
tural type analysis can also be performed recursively (as opposed to
mere one-level type case). Checking for type equality is a standard
example, and so looks like a promising base for a type-safe cast, as
Weirich shows [36].

There are two difficulties. First, adding intensional polymorphism
to the language is a highly non-trivial step. Second, and even more
seriously, all the work on intensional polymorphism is geared to-
wardsstructural type analysis, whereas our setting absolutely re-
quiresnominaltype analysis (cf. [7]). For example, these two types
are structurally equal, but not nominally equal:
data Person = P String Float -- Name and height
data Dog = D String Float -- Name and weight

We should not treat aPerson like a Dog — or at least we should
allow them to be distinguished.

There is a great deal of excellent research on introducingdynamic
typesinto a statically-typed language; for example [1, 2, 20]. How-
ever, it addresses a more general question than we do, and is there-
fore much more complicated than necessary for our purpose. In
particular, we do not need the typeDynamic, which is central to
dynamic-typing systems, and hence we do not needtypecase ei-
ther, the principal language construct underlying dynamictyping.

The classTypeable and theunsafeCoerce function, are the foun-
dation of theDynamic library, which has been a standard part of the
Hugs and GHC distributions for several years. However, it seems
that the material of Section 8 has never appeared in print. The key
idea first appeared in an 1990 email from one of the current au-
thors to the (closed)fplanc mailing list [27], later forwarded to the
(open) Haskell mailing list [12]. Thecast function is not so well
known, however; the first reference we can trace was a messageto
the Haskell mailing list from Henderson [9].

10 Concluding remarks
We have presented a practical design pattern for generic program-
ming in a typed functional setting. This pattern encouragesthe pro-
grammer to avoid the implementation of tiresome and maintenance-
intensive boilerplate code that is typically needed to recurse into
complex data structures. This pattern is relevant for XML docu-
ment processing, language implementation, software reverse and
re-engineering. Our approach is simple to understand because it
only involves two designated concepts of one-layer traversal and
type cast. Our approach is general because it does not restrict
the datatypes subject to traversal, and it allows to define arbitrary
traversal schemes — reusable ones but also application-specific
ones. Language support for the design pattern was shown to be
simple. The approach takes advantage of research to put rank-2
type systems to work.

Performance

Our benchmarks show that generic programs are reasonably ef-
ficient (see also the accompanying software distribution).The
generic program for salary increase, for example, is 3.5 times
slower9 than the normal hand-coded program. The dominant cause
of this penalty is our sub-optimal encoding technique for type-safe
cast. Recall that generic traversals perform a comparison of type
representations for every encountered node at run-time. Soit is
crucial to make type representations very efficient, preferably via
built-in support. A hand-written solution does not involveany such
checks. The above factor is also caused by the fact that generic
traversal schemes are not accessible to a number of optimisations
which are available for hard-wired solutions. This is because the
gmap family relies on theTerm class and higher-order style. Fi-
nally, recall that generic traversals tend to traverse morenodes than
necessary if extra precautions are omitted to stop recursion.

Perspective

We are currently investigating options to support the key combina-
torscast andgfoldl (or thegmap family) efficiently by the GHC
compiler for Haskell. Such a native implementation will remove the
penalty related to the comparison of type representations,and it will
render external generative tool support unnecessary. As the paper
discusses, such built-in support is not hard to provide, butthere is
some design space to explore. We are also working on automating
the derivation of stop conditions for traversals based on reachability
properties of the recursive traversal schemes and the traversed data
structure. We envisage that a template-based approach [30]can be
used to derive optimised traversals at compile time.
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