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Abstract

We describe a design pattern for writing programs that teevdata
structures built from rich mutually-recursive data typ8sich pro-
grams often have a great deal of “boilerplate” code that 5imp
walks the structure, hiding a small amount of “real” code ttam-
stitutes the reason for the traversal.

Our technique allows most of this boilerplate to be writtem@and
for all, or even generated mechanically, leaving the progner
free to concentrate on the important part of the algorithrhese
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specified department as spelled out in Section 2. This ismaha
usual situation. On the contrary, performing queries ardfarma-
tions over rich data structures, nowadays often arisingn frkiML
schemata, is becoming increasingly important.

Boilerplate code is tiresome to write, and easy to get wrdmhore-
over, it is vulnerable to change. If the schema describiegctim-
pany’s organisation changes, then so does every algorfiathré-
curses over that structure. In small programs which walk one
or two data types, each with half a dozen constructors, shigt

generic programs are much more adaptive when faced with datamuch of a problem. In large programs, with dozens of mutually

structure evolution because they contain many fewer lifidgoe-
specific code.

Our approach is simple to understand, reasonably efficiamt, it
handles all the data types found in conventional functipnadjram-
ming languages. It makes essential use of rank-2 polymsmplan
extension found in some implementations of Haskell. Furithe-
lies on a simple type-safe cast operator.
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D.3.1 [Programming Language$: Formal Definitions and The-
ory; D.2.13 Boftware Engineering: Reusable Software
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1 Introduction

Suppose you have to write a function that traverses a riclurre
sive data structure representing a company’s organisdtgiruc-
ture, and increases the salary of every person in the staubiyu
10%. The interesting bit of this algorithm is performing gagary-
increase — but the code for the function is probably domuhate
“boilerplate” code that recurses over the data structufintbthe
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recursive data types, some with dozens of constructorsnéiete-
nance burden can become heavy.

Generic programmingechniques aim to eliminate boilerplate code.
There is a large literature, as we discuss in Section 9, buthmu
of it is rather theoretical, requires significant languageesions,
or addresses only “purely-generic” algorithms. In this grapve
present a simple but powerful design pattern for writing eyen
algorithms in the strongly-typed lazy functional languatgskell.
Our technique has the following properties:

e It makes the application program adaptive in the face of data
type (or schema) evolution. As the data types change, only
two functions have to be modified, and those functions can
easily be generated because they are not applicationfispeci

e |t is simple and general. It copes with arbitrary data-type
structure without fuss, including parameterised, mujsall
recursive, and nested types. It also subsumes other stiyles o
generic programming such as term rewriting strategies.

e It requires two extensions to the Haskell type system, namel
(a) rank-2 types and (b) a form of type-coercion operator.
However these extensions are relatively modest, and aee ind
pendently useful; they have both been available in two popul
implementations of Haskell, GHC and Hugs, for some time.

Our contribution is one of synthesis: we put together sonee re
tively well-understood ideas (type-safe cast, one-layapshin an
innovative way, to solve a practical problem of increasimgpaor-
tance. The paper should be of direct interest to programraacs
library designers, but also to language designers becditise fur-
ther evidence for the usefulness of rank-2 polymorphicgype

The code for all the examples is available online at:
http://ww. cs. vu.nl/Strafunski/gmap/

The distribution comes with generative tool support to gate

all datatype-specific boilerplate code. Our benchmarksvshat

it is possible to get the run-time performance of typical eyén

programs reasonably close to the hand-coded boilerpi&asive

counterparts (Section 10).



2 The problem

We begin by characterising the problem we are addressing- Co
sider the following data types that describe the orgarmieatistruc-
ture of a company. A company is divided into departments lwvhic
in turn have a manager, and consists of a collection of sus-un
A unit is either a single employee or a department. Both marsag
and ordinary employees are persons receiving a salary.i§hat

data Conpany = C [Dept]

data Dept = D Name Manager [ SubUnit]
data SubUnit = PU Enpl oyee | DU Dept
data Enpl oyee = E Person Sal ary

data Person = P Name Address

data Salary = S Float

type Manager = Enployee

type Name = String

type Address = String

Here is a small company represented by such a data structure:
genCom :: Conpany
genCom = C [D "Research" ralf [PU joost, PU marlow,
D "Strategy" blair []]

ralf, joost, marlow, blair :: Enployee

ralf = E (P "Ralf" "Amsterdant) (S 8000)
joost = E (P "Joost" "Ansterdant) (S 1000)
marlow = E (P "Marlow" "Canbridge") (S 2000)
blair = E (P "Blair" "London") ('S 100000)

The advent of XML has made schemata like this much more
widespread, and many tools exist for translating XML schiama
into data type definitions in various languages; in the case o
Haskell, HaXML includes such a tool [35]. There are often gnan
data types involved, sometimes with many constructors,theid
structure tends to change over time.

Now suppose we want to increase the salary of everyone irothe ¢

pany by a specified percentage. That is, we must write theifumc
increase :: Float -> Conpany -> Conpany

So that(increase 0.1 genCom will be just like genComexcept

that everyone’s salary is increased by 10%. It is perfecthight-
forward to write this function in Haskell:

increase k (Cds) = C (map (incD k) ds)
incD :: Float -> Dept -> Dept
incDk (D nmngr us) =

D nm (inckE k mgr) (map (incU k) us)
incU:: Float -> SubUnit -> SubUnit
incUk (PUe) = PU (incE k e)

incUk (DU d) = DU (incD k d)

inck :: Float -> Enployee -> Enpl oyee

incEk (Eps) =Ep (incSk s)

incS:: Float -> Salary -> Salary

incSk (Ss) =S (s * (1+k))
Looking at this code, it should be apparent what we mean bi-“bo
erplate”. Almost all the code consists of a routine travieo$ahe
tree. The only interesting bit isncS which actually increases a
Sal ary. As the size of the data type increases, the ratio of inter-
esting code to boilerplate decreases. Worse, this sortitgrplate
needs to be produced for each new piece of traversal furadiipn
For example, a function that finds the salary of a named iddadi
would require a new swathe of boilerplate.

3  Our solution

Our goal, then, is to writé ncr ease without the accompanying
boilerplate code. To give an idea of what is to come, hereaés th

code fori ncr ease:
increase :: Float -> Conpany -> Conpany
increase k = everywhere (nkT (incS k))
And that is it! This code is formed from four distinct ingredits:
e The functioni ncS (given in Section 2) is the “interesting
part” of the algorithm. It performs the arithmetic to incsea
aSalary.

e The functionnkT makes aype extensiomf i ncS (readnkT
as “make a transformation”), so that it can be applied to any
node in the tree, not jusal ary nodes. The type-extended
function,nkT (incS k), behaves like ncS when applied to
a Sal ary and like the identity function when applied to any
other type. We discuss type extension in Section 3.1.

e The functionever ywher e is ageneric traversal combinator
that applies its argument function to every node in the tree.
In this case, the function is the type-extendedtS func-
tion, which will increase the value &l ary nodes and leave
all others unchanged. We discuss generic traversal in Sec-
tions 3.2 and 3.3.

e Both nkT andever ywher e are overloaded functions, in the
Haskell sense, over the classBgeabl e and Term (to be
introduced shortly). For each data type involv€dnpany,

Dept, Person, etc.) the programmer must therefore give an

i nst ance declaration for the two classes. However these in-
stances are, as we shall see in Sections 3.2 and 8, extremely
simple — in fact, they are “pure boilerplate” — and they can
easily be generated mechanically. The software distobuti
that comes with the paper includes a tool to do just that.

The following sections fill in the details of this sketch.

3.1 Type extension

The first step is to extend a function, such asS, that works over
a single typet, to a function that works over many types, but is
the identity at all types but The fundamental building-brick is a
type-safecast operator the type of which involves a Haskell class
Typeabl e of types that can be subject to a cast:

-- An abstract class

class Typeabl e

-- A type-safe cast operator
cast :: (Typeable a, Typeable b) => a -> Maybe b

Thiscast function takes an argumentof typea. It makes a run-
time test that compares the typeandb; if they are the same type,
cast returnslust x; if not, it returnsNot hi ng.1 For example, here
is an interactivesHC session:

Prelude> (cast 'a') :: Maybe Char
Just @&’

Prelude> (cast "a') :: Maybe Bool
Not hi ng

Prel ude> (cast True) :: Mybe Bool
Just True

The type signature in the above samples geest its result con-
text, Typeabl e b, so it knows what the result type must be; without
that, it cannot do the type test. Because the type digssabl e
constrains the types involvedast is not completely polymor-
phic: both argument and result types must be instances afdke
Typeabl e.

Type-safe cast can be integrated with functional progrargnm
various ways, preferably by a language extension. In fads i

1in many languages a “cast” operator performiegresentation
changeas well astype change Here, cast is operationally the
identity function; it only makes a type change.



well-known folk lore in the Haskell community that much ofeth  The important thing to notice is thatapT only appliesf to the
functionality ofcast can be programmed in standard Haskell. In immediatechildren of the node as opposed to any kind of recursive

Section 8, we provide a corresponding Haskell-encodingdaa traversal. Here, for example, is ther minstance for lists, which

be regarded as a reference implementation for type-safe Tais follows exactly the same pattern as the instancéifipt oyee:

will clarify that a corresponding extension turns out to ba@dest instance Terma => Term[a] where

one. For the coming sections we will simply assume tizat is gmapT f [] =[]

available, and that every type is an instanc&ygfeabl e. gmapT f (x:xs) = f x : f xs

Givencast , we can writenkT, which we met in Section 3: Notice the f xs” for the tail — not “gmapT f xs”; gmapT tra-
nkT :: (Typeable a, Typeable b) verses one layer only, unlike the common recursiye function.

= (b->b) ->a->a

_ 3.3 Recursive traversal
nkT f = case cast f of
Just g ->g¢ Even thoughymapT has this one-layer-only behaviour, we can syn-
Nothing -> id thesise a variety of recursive traversals from it. Indeedye shall
That is,nkT f x appliesf tox if x's type is the same dss argu- see, it is precisely its one-layer behaviour that makes\hiiety
ment type, and otherwise applies the identity functiom tdHere easy to capture.
are some examples: For example, thever ywher e combinator applies a transformation
Prelude> (nkT not) True to every node in a tree:
Fal se -- Apply a transformation everywhere, bottom up
Prel ude> (nkT not) 'a’ everywhere :: Terma
T’ => (forall b. Termb =>b -> b)
“nkT” is short for “make a transformation”, because it constsuact ->a->a
generic transformation function. We can ud to lift i ncS, thus: everywhere f x = f (gmapT (everywhere f) Xx)
inc :: Typeable a => Float ->a -> a We can read this function as follows: first applyer ywhere f to
inc k = nkT (incS k) all the children ok, and then apply to the result. The recursion is
Soi nc is applicable to any type that is an instanc@ygeabl e but in the definition ofever ywher e, not in the definition ofymapT.2
we ultimately aim at a function that appliesc to all nodesin a The beautiful thing about building a recursive traversahtsgy
tree. This necessitates generic traversal. out of non-recursivegmapT is that we can build many different

strategies using a single definition gfrepT. As we have seen,
everywher e works bottom-up, becaudeis applied aftegmapT

3.2 One-layer traversal has processed the children. It is equally easy to do top-down
Our approach to traversal has two steps: for each data typetee -- Apply a transfornation everywhere, top-down

a single functiongmapT, that traverses values of that type; thenwe ~ €verywhere’ :: Terma

build a variety of recursive traversals fraymapT. In the context of => (forall b. Termb =>b ->b)
Haskell, we overloadmapT using a type claser m ->a->a

class Typeable a => Term a where everywhere’ f x = gnapT (everywhere’ f) (f x)
gmapT :: (forall b. Termb =>b ->b) ->a ->a In the rest of this paper we will see many different recursivate-

The intended behaviour is thigmapT takes a generic transforma- gies, each of which takes a line or two to define.

tion (such as nc k) and applies it to all themmediatechildren of This extremely elegant way of buildingrecursivetraversal in two
the value. It is easiest to understand this idea by exampdee 4 steps — first define @ne-layermap, and then tie the recursive

thei nst ance declaration folEnpl oyee: knot separately — is well-known folk lore in the functionabp
i nstance Term Enpl oyee where gramming community, e.g., when dealing with ana- and catamo

gmapT f (E per sal) = E (f per) (f sal) phisms for regular data types such as lists [22]. For lackettel-

established terminology we call itlfe non-recursive map trick

Here we see clearly thgmapT simply applied to the immediate and review it in Section 9.2,

children ofE, namelyper andsal , and rebuilds a ne\ node.
There are two things worth mentioning regarding the type of 3.4 Another example

gmapT and its hosting clasSerm Firstly, gmapT has a non- | est we get fixated onncr ease here is another example that uses
standard type: its first argument ipalymorphicfunction, of type  {he same design pattern. Let us write a function that flatens

forall b. Termb =>b ->b. Why? Because itis appliedto  gmeq department; that is, it takes alb’s sub-units and makes
bothper andsal in thei nst ance declaration, and those two fields  {hem part ofd’s parent department:

have different types. Haskell 98 would reject the typeymdpT,
but rank-2 types like these have become quite well-estadaisn
the Haskell community. We elaborate in Section 9.1. Segondl

flatten :: Name -> Conpany -> Conpany
flatten d = everywhere (nkT (flatD d))

note the recursion in the class declarationifefm The member flatD :: Name -> Dept -> Dept
signature fogmapT refers toTer mvia a class constraint. flatD d (D n mus)
Obviously, we can provide a simple schematic definitiorgfaapT \M;erDen m (concat Map unwrap us)
for arbitrary termsC t1 ... tn: . . .
unwap :: SubUnit -> [SubUnit]
gmapT f (Ctl ... tn) =C(f t1) ... (f tn) unwap (DU (D d mus)) | d==d’ = PUm: us
When the node has no childregnepT has no effect. Hence the unwrap u = [u]
Ter minstance foBool looks like this:
i nstance Term Bool where 2|n “point-free” notation:

gmapT f x = x everywhere f = f . gmapT (everywhere f)



The functionf | at D does the interesting work on a department: it 4 Queries

looks at each of its sub-units, appliesunwr ap to get a list of units
(usually the singleton ligtu] ), and concatenates the resditéthen
unw ap sees the target departmedt£= d') it returns all its sub-
units. The managenmis not fired, but is turned into a plain work-

Thus far we have concentrated on genéndnsformations We re-
call the corresponding type scheme:

forall a. Terma =>a -> a

ing unit,PU m(presumably subject to drastic subsequent salary de- There is a second interesting class of generic programsvéhaall

crease).

Again, this isall the code for the task. The one-line function
flatten uses exactly the same combinatever ywher e andnkT

as before to "lift"f | at Dinto a function that is applied everywhere
in the tree.

Furthermore, if the data types change — for example, a nemv for

generic queriesA generic query has a type of the following form:
forall a. Terma =>a -> R

HereRis some fixed result type. For example, suppose we wanted
to compute the salary bill of the company; we would need atfanc
of the following type:

sal aryBil | Conpany -> Fl oat

of SubUni t is added — then the per-data-type boilerplate code must HereFl oat is the fixed result typ&.

be re-generated, but the code farcrease andflatten is un-
changed. Of course, if the number of fields iDept or SubUni t
changed, theril at D would have to change too, becaudeat D
mentions théU andD constructors explicitly. But that is not unrea-
sonable; if aDept s units were split into two lists, say, one for peo-
ple and one for sub-departments, the algorithm really whale
to change.

3.5 Summary

We have now completed an initial description of our new desig
pattern. To summarise, an application is built from threentts of
code:

Programmer-written: a short piece of code for the particular ap-
plication. This typically consists of (a) a code snippetadite
real work (e.g.j ncS) and (b) the application of some strategy
combinators that lift that function to the full data type,dan
specify the traversal scheme.

Mechanically-generated: for each data type, twionst ance dec-
larations, one for clasB/peabl e and one for clas$er m The

former requires a fixed amount of code per data type (see Sec-
tion 8). The latter requires one line of code per constryctor

as we have seen. Because the two kindsnst ance decla-

rations take a very simple, regular form, they can readily be

generated mechanically.
Library: a fixed library of combinators, such askT and

ever ywher e. The programmer can readily extend this library

with new forms of traversal.

One way to generate thest ance declarations is to use the DrlFT
pre-processor [38]. Furthermore, derivable type class&k (al-
most) can do the job, or Template Haskell [30]. The softwase d
tribution that comes with the paper includes a customisesive
of DrIFT. However, mechanical support is not absolutelyassary:
writing this boilerplate code by hand is not onerous andlitpsys
off because it is a one-off task.

The rest of the paper consists of an elaboration and ges&tialh of

the ideas we have presented. The examples we have seen e far a

all generictransformationghat take &Conpany and produce a new

Conpany. It turns out that two other forms of generic algorithms

are important: generiqueries(Section 4) andnonadic transfor-

mations(Section 5). After introducing these forms, we pause to

reflect and generalise on the ideas (Section 6), before slyavat
the three forms of algorithm can all be regarded as a form ldf fo
operation (Section 7). Lastly, we return to the type-sa&t opera-
tor in Section 8.

SconcatMap :: (a->[b]) ->[a] -> [b] maps a function
over a list and concatenates the results.

4.1 Implementing queries

Our general approach is exactly the same as before: we usexyp
tension to lift the interesting part of the function into dyoorphic
function; for each data types we give a single overloadectsal
function; and we buildal aryBi | | from these two pieces. Here is
the code, which looks very similar to that foncr ease:

sal aryBil | Conpany -> Fl oat
salaryBill = everything (+) (0 ‘nkQ@ billS)
billS:: Salary -> Float

billS (Sf) =f

The interesting part ofal aryBi | | is the functionbi | | S that ap-
plies to aSal ary. To lift bi | | S to arbitrary types, we us&Q, a
cousin ofnkT:
mkQ :: (Typeable a, Typeable b)
=r ->(b->r) ->a->r
(r 'nkQ@ q) a = case cast a of
Just b ->qb
Nothing -> r
Thatis, the queryr ‘nk@ q) behaves as follows when applied to
an argumend: if a’s type is the same aps argument type, usgto
interrogate a; otherwise return the default valu&o illustrate, here
are some examples of usingQin an interactive session (recall that
ord has typeChar -> Int):

Prelude> (22 ‘nk@ ord) 'a

97

Prelude> (22 ‘nk@ ord) 'k
98

Prelude> (22 ‘nk@ ord) True
22

The next step is to extend tiier mclass with a functiogmapQthat
applies the specified query function and makes a list of thelte

class Typeable a => Term a where
gnmapT :: (forall b. Termb =>b ->h) ->a->a
gmapQ :: (forall b. Termb =>b ->r) ->a ->[r]
The instances afmapQare as simple as those fomapT:

i nstance Term Enpl oyee where
gmapT = ... as before ...

gmepQ f (Eps) =[f p, f 5]
instance Terma => Term[a] where

gmapT = ... as before ...

gmepQ f [] =[]

gmapQ f (x:xs) =[f x, f xs]
i nstance Term Bool where

gmapT x = ... as before ...

gmepQ x =[]

Just as withlgnapT, notice that there is no recursion involved (it is a
one-layer operator), and that the function has a rank-2 type



Now we can usgmapQ to build theever yt hi ng combinator that
performs the recursive traversal. Like any fold, it needsperator
k to combine results from different sub-trees:

-- Summarise all nodes in top-down, left-to-right
everything :: Terma
= (r ->r1 ->7)
-> (forall a. Terma =>a ->r)
->a->r
everything k f x
=foldl k (f x) (gmapQ (everything k f) x)
Here we see thaver yt hi ng processes the children »f giving a
list of results; and then combines those results using ttieary list
functionf ol dI , with the operatok as the combiner. Thef x) is
the result of applying the query xatself, and that result is included
in thef ol dl . And that concludes the definition ol aryBi | | .

4.2 Other queries

By changing the query function and combining operator we can
easily query for a single value rather than combining vafoes
all nodes in the tree. For example, here is how to extract aedam
department from the company data structure:

find :: Name -> Conpany -> Maybe Dept

find n = everything orEl se (Nothing ‘nk@ findD n)

findD:: String -> Dept -> Mybe Dept
findDn d@bn’ _ )

| n=n = Just d

| otherw se = Nothing
orElse :: Mybe a -> Maybe a -> Maybe a

X ‘orEl se' y = case x of

Just _ ->x

Nothing -> vy
The use off ol dl in everythi ng means thafind will find the
leftmost, shallowest department with the specified namis.dasy
to make variants oéveryt hi ng that would find the right-most,
deepest, or whatever. Laziness plays a role here: once aichepd
of the specified name has been found, traversal will cease.

5 Monadic transformation

As well as transformations (Section 3) and queries (Sedfjdhere
is a third useful form of generic algorithm, namelynanadic trans-
formation For example, suppose we wanted to proceSsnaany
structure discarding the ofghl ary values, and filling in new ones
by looking up the employee’s name in an external databasat Th
means there is input/output involved, so the function masehype

| ookupSal aries :: Conpany -> | O Conpany
This type does not fit the scheme for generic transformatans
queries, so we have to re-run the same development one nrae ti
First, we need a functiomkMto construct basic monadic transfor-
mations:

mkM :: (Typeable a, Typeable b,

Typeable (ma), Typeable (mb),
Monad nm)
= (b->mb) ->a->ma
mkM f = case cast f of
Just g ->g
Nothing -> return

The type ofnkMlooks somewhat scary, but it simply explains all
the type-representation constraints that are needed pa-dsfe
cast. Then we need to extend once more the dlassto support
monadic traversal:

class Typeable a => Term a where

gmapT :: . as before ...

gmapQ :: as before ...
gmapM :: Monad m
=> (forall b. Termb =>b -> mb)

->a->ma
The instances fognmapM are just as simple as before; they use
Haskell'sdo notation for monadic composition:
i nstance Term Enpl oyee where

gnepMt (Ep's) = do p <
s <-
return (Ep s")

fp
fs
instance Terma =>

Term[a] where

gmapM f ]
gmapM f (x: xs)

return []

do x’ < f X
xs' < f xs
return (x':xs")

Now we can make aever ywher eMcombinator:
everywhereM :: (Mnad m Term a)

=> (forall b. Termb =>b -> mb)
->a->ma
everywhereMf x = do x’ <- gmapM (everywhereM f) x

fx
Finally, we can writd ookupSal ari es as follows:
| ookupSal ari es = everywhereM (kM | ookupE)

| ookupE :: Enpl oyee -> |10 Enpl oyee
| ookupE (E p@P n ) )
= do { s <- dbLookup n; return (Ep s) }

dbLookup :: Name -> |10 Sal ary
-- Lookup the person in the external database

The obvious question is this: will each new application iszja
new variant ogmap? We discuss that in Section 7. Meanwhile, we
content ourselves with two observations. FigstpT is just a spe-
cial case ofgmapM using the identity monad. (In faagmapQ can
also be encoded usirmgrapM although not so directly.) Second,
one might wonder whether we need a monadic forrgreipQ, by
analogy withgmapT/gmapM No, we do not: a monadigueryis just

a special case of an ordinary query. To see that, we needexog¥
nise thatVhybe is a monad, so th&i nd operation of Section 4.2 is
really performing a monadic query.

6 Refinements and reflections

Having introduced the basics, we pause to reflect on the alittie
and to make some modest generalisations.

6.1 An aside about types

It is worth noticing that the type afver ywher e could equivalently
be written thus:
everywhere :: (forall b. Termb => Db -> b)
-> (forall a. Terma => a -> a)
by moving the implicitf oral | a inwards. The nice thing about
writing it this way is that it becomes clear thater ywhere is a
generic-transformation transformer. We might even wtits:t
type GenericT = forall a. Terma =>a ->a
everywhere :: GenericT -> GenericT
The same approach gives a more perspicuous typ éoiyt hi ng:
type GenericQr = forall a. Terma =>a ->r
everything :: (r ->r ->7r)
-> GerericQr -> CGerericQr



From a type-theoretic point of view, these type signaturesden-
tical to the original ones, and GHC supports such isomomsis
directly. In particular, GHC allows &oral | in type synonym
declarations (such &eneri cT) and allows & oral | to the right

of a function arrow (which happens when the type synonym-s ex
panded).

6.2 Richer traversals

Sometimes we need to combine generic queries and transforma
tions. For example, suppose we want to increase the salafries
everyone in a named department, leaving everyone elsaiysai-
changed. The main function is a generic transformafianr One,

but it uses the services of a generic quiesiept :

incrOne :: Nanme -> Float -> GenericT
incrne n k a

| isDept n a = increase k a

| otherwise = gmapT (incrOne d k) a
i sDept :: Name -> GenericQ Bool

isDept n = False ‘nkQ isDeptDn

i sDeptD :: Nane -> Dept -> Bool
isDeptDn (Dn" _ ) = n==n’

i ncr One first tests its argument to see whether it is the targeted de-
partment but, becausacr One is agenerictransformation, it must
use a generic queriysDept to make the test. The latter is built just
as before usingkQ Returning ta ncr One, if the test return3r ue,

we calli ncrease (from Section 3) on the departménbtherwise

we applyi ncr One recursively to the children.

In this case we did not use one of our traversal combinators
(everything, everywhere, etc.) to do the job; it turned out to
be more convenient to write the recursion explicitly. Thisyet
another example of the benefit of keeping the recursion otheof
definition of thegmap functions.

6.3 Identifying the interesting cases

Our generic programming technique encourages fine typmclist
tions via algebraic data types as opposed to anonymous suins a
products. The specific data types usually serve for theifiatton
of interesting cases in a generic algorithm. For examplelses a
separate data type f8al ary:

data Salary = S Float
If we had instead used an ordindflyoat instead ofSal ary, and
if the Per son type also included &l oat (the person’s height, per-
haps) the ncr ease of Section 3 might end up increasing everyones
height as well as their salary!

If this happens, one solution is to add more type distinstjore.,
declarations of datatypes and newtypes as opposed to type sy
onyms. Another is simply to include some more context to the
program in terms of the intercepted patterns. Thus, instéas-
ing nkT to build special case foFl oat, build a special case for
Enpl oyee:

increase k = everywhere (nkT (incE k))

inck :: Float -> Enployee -> Enpl oyee
incSk (Eps) =Ep (s * (1+k))

There is a dual problem, which is persuading the traversations
tostop The programmer might want to cut off traversal explicitly a
certain kinds of nodes. In the case of a transformation, suthbffs
are useful to restrict the extent of changes in the tree. Xamele,

4Actually, Section 3 gave a monomorphic typeitacr ease,

whereas we need it to have a generic type here, so we would have hcP ::

to generalise its type signature.

we could further parameteriseer ywher e by a generic query that
returnsTr ue if the traversal should not visit the sub-tree:

ever ywher eBut Ceneri cQ Bool
-> CenericT -> GenericT

everywhereBut q f x

| g x = X

| otherwise = f (gmapT (everywhereBut g f) Xx)
increase k = everywhereBut names (nkT (incS k))
names ::. GenericQ Bool
names = Fal se ‘nkQ@ isNanme
i sName :: String -> Bool

isNane n = True

Writing such “stop conditions” is useful not only to restiilee cov-
erage of traversal, but also to avoid “fruitless traverskBr exam-
ple, thei ncr ease function will unnecessarily traverse every char-
acter of the department’s name, and also of each person’s.nam
(In Haskell, aString is just a list ofChar.) From the point of
view of the generic function, it is entirely possible thagté might

be aSal ary buried inside the name. Writing efficiency-directed
stop conditions is undoubtedly tiresome, and is a shortagrof

our approach. It can only be avoided by an analysis of the-data
type structure, which is certainly feasible, but only wittmapiler
support.

6.4 Compound type extension

Continuing the same example, what if there happened to betwo
more uninteresting types, that we wanted to refrain frometrsing?
Then we would need a generic query that returfrage for any of
those types, anBal se otherwise. Compound type extensions like
this are the topic of this section.

The general question is this: given a generic query, how can w
extend it with a new type-specific case? We need, a cousin of
nkQ

extQ:: (Typeable a, Typeable b)

=>(a->r) ->(b->r) ->(a->r)
(g ‘extQ f) a = case cast a of
Just b ->f b
Nothing -> g a

We can now build a generic query that has arbitrarily mangispe
cases simply by composiregt Q. There are similar type-extension
functions,ext T andext M that allow a generic transformation to
have an arbitrary number of type-specific cases.

Here is a more interesting example. Suppose we want to genera
an association list, giving the total head-count for eaghadenent:
headCount :: Conpany -> [(Nane,Int)]
headCount ¢ = fst (hc c)

type Hclnfo = ([(Nane,Int)],
hc :: GenericQ Helnfo

The main generic functiomgc, returns arHcl nf o; that is, a pair of
the desired association list together with the total heashtof the
sub-tree. (Returning a pair in this way is just the standapdirig
design pattern, nothing to do with generic programmingr¥trive
define the the type-specific cases for the two tyjegs andPer son
of interest:

Int)

hcD :: Dept -> [Hclnfo] -> Hclnfo
heD (D d _ us) kids = ((d,n):1, n)
wher e
(I',n) = addResults kids

Person -> [Hclnfo] -> Helnfo
hePp_=([1. 1)



addResults :: [HcInfo] -> Helnfo
addResults rs = (concat (map fst rs),
sum (map snd rs))

Each of them takes a list 6E| nf 0, the head-count information for
the child nodes (irrelevant for Rer son), and the node itself, and
builds the head-count information for the node. For a persen
return a head-count of 1 and an empty list of departmentdevidni
a department we add the department to the list of sub-depatsm
plus one for the manager herself. Now we can combine thege fun
tions using a new traversal combinatpier y Up:

queryUp :: (forall a. Terma =>a -> [r] ->r)

-> GenericQr
queryUp f x = f x (gmapQ (queryUp f) x)

hc :: GenericQ Helnfo
hc = queryUp (hcG ‘ext@ hcP ‘ext@ hcD)

hcG:: Terma =>a -> [HcInfo] -> Helnfo
hcG node kids = addResults kids

Herequer yUp first deals with the children (via the call torapQ),

and then applies the specified function to the nod@d the query
results of the children. The main functidrt, callsquer yUp with a
function formed from a generic cabeG, with two type extensions
for hcP andhcD. As an aside, we are using generic queries with a
higher-order result type here, naméhyj - >r .

6.5 Strange types

Programming languages like ML and Haskell permit rathee-fre
wheeling data type definitions. Algebraic data types can bhe m
tually recursive, parameterised (perhaps over highedddntype
variables), and their recursion can be non-uniform. Hegesame
typical examples (the last one is taken from [3]):

data Rose a = KR a [Rose a]

data Flipa b =Nl | Cons a (Flip b a)

Var v | App (Ev) (EV) |
Zero | Succ v

data Ev = Lam (E (Inc v))
data Inc v =
For all of these th&er minstance declaration follow the usual form.
For example, here is tHeer minstance foiRose:
instance Terma => Term (Rose a) where
gmapT f (MR a rs) = KR (f a) (f rs)

gmapQ f (MR a rs) =[f a, f rs]
grapMf (MR ars) =doa < f a
rs’ <- frs

return (MR a rs')

Components of algebraic data types can also involve locahtiiu
fiers and function types. The former do not necessitate amgifsp
treatment. As for the latter, there is of course no extersdiomy
to traverse into function values unless we meant to tra\iateg¢he
source code of functions. However, encountering functiarte
course of traversal does not pose any challenge. We carfureat
tions as atomic data types, once and for all, as shown here:

instance Term (a -> b) where

gmapT f x = x
gmapQ f x =[]
gmapM f x = return x

Type-safe cast copes with all these strange types as wellibedt
is not at all sensitive to the structure of the datatype camepts.
TheTypeabl e instances deal with theamesof the datatypes, and
the names of their parameter types or type constructors.

7 Generalisinggnap

We have seen three different magsapT, gnmapQ, andgmapM They
clearly have a lotin common, and have a rich algebra. For pl&m

gnapT id = id
gmapT f . gmapT g = gmapT (f . g)
gmapQ f . gmapT g = gmapQ (f . g)

Two obvious questions are these: (a) might a new application
quire a new sort ofmap? (b) can we capture all three as special
cases of a more general combinator?

So far as (a) is concerned, any generic function must hawe typ
Terma => a ->F(a)

for some type-level functior. We restrict ourselves to type-
polymorphic functions-; that is,F can return a result involving,
but cannot behave differently dependingais (type) value. Then
we can see thd can be the identity function (yielding a generic
transformation), ignora (yielding a query), or return some com-
pound type involvinga. In the latter case, we vieW(a) as the
application of a parameterised type constructor. We calvére
case of a monad vigmapMbut we lack coverage for other type con-
structors. So indeed, a generic function with a type of thmfo

Terma => a -> (a, a)
is not expressible by any of ognap functions.

But all is not lost: the answer to question (b) is “yes”. Itrtsirout

that all the generic maps we have seen are just special oestarf

a more fundamental scheme, namely a fold over construcfii-ap
cations. At one level this comes as no surprise: from dealiitiy
folds for lists and more arbitrary datatypes [22], it is knothat
mapping can be regarded as a form of folding. Howeiés, ab-
solutely not straightforward to generalise the map-issidfidea to

the generic settingoecause one usually expresses map as a fold by
instantiating the fold’s arguments in a data-type-speuitig.

In this section we show that by writing fold in a rather curgnin
way it is nevertheless possible to express various mapsrinste

of a single fold in a generic setting. Before diving in, we egkn
that this section need not concern the application programaour
threegnaps have been carefully chosen to match a very large class
of applications directly.

7.1 The generic fold

We revise the clas$er mfor the last time, adding a new operator
gf ol dl . We will be able to define all thregmap operators using

gf ol dl but we choose to leave them as methods of the class. Doing
so means that when giving an instance Ter mthe programmer
may, if she wishes, defingmapT etc. directly, as we have done
earlier in the paper.

class Typeable a => Terma where
gnapT :: (forall b. Termb =>b ->h) ->a->a
gmapQ :: (forall b. Termb =>b ->r) ->a ->[r]
gmapM :: Monad m

=> (forall b. Termb =>b ->mb) ->a->ma
gf ol dl (forall ab. Terma =>w(a ->b)

->a->wh)
-> (forall g. g ->wg)
->a->wa

Trying to understand the type gf ol dI directly can lead to brain
damage. Itis easier to see what the instances look like. idéne
instance for the typelspl oyee andSubUni t:
instance Term SubUnit where
gfoldl k z (PUp) =z PU'k"' p
gfoldl k z (DUd) =z DU "'k" d



i nstance Term Enpl oyee where
gfoldl k z (Eps) =(z E‘k' p) ‘k' s
Notice thatthe constructor itselfE, or PU etc.) is passed to the
function as a base case; this is the key difference from dladoid,
and is essential to generic definitionsgolapT etc. usinggf ol dl .
In particular:

gfoldl ($) idx = x

That is, instantiating to the identity function, and to function
application($) simply rebuilds the input structure. That is why we
chose a left-associative fold: because it matches thasfociative
structure of function application.

7.2 Usinggf ol dI

We will now show thagnmapT and friends are just special instances
of gf ol dl . That idea is familiar from the world of lists, whemap
can be defined in terms 60l dr. Looking at an instance helps to
make the point:

gmapT f (Eps) =E(f p) (f )

gfoldl kz (Eps) =(z E‘k' p) ‘k' s
How can we instantiate andz so thatgf ol dl will behave like
gmapT? We need to be the identity function, whil& should be
defined to applyf to its second argument, and then apply its first
argument to the result:

gmapT f = gfoldl kid

wher e
kcx=c(fx)

Operationally this is perfect, but the types are not qugbtrigmapT
returns a value of type while gf ol dl returns g w a) . We would
like to instantiatew to the identity function (at the type level), ob-
taining the following specialised type fgf ol dl :

gfol di (forall abh. Terma => (a -> h)

->a->bh)

-> (forall g. g ->9)
->a->a
However, functions at the type level make type inference muc
harder, and in particular, Haskell does not have them. The so
tion is to instantiatav to the type constructdrD accompanied by
some wrapping and unwrapping:
newtype IDx = 1D x

uniD:: IDa->a

unlD (IDx) = x

gmapT f x = unl D (gfoldl

wher e
k (IDc) x =1D (c (f x))

Thel Dconstructor, and its deconstructmi D are operationally no-
ops, but they serve to tell the type checker what to do. Theding
of gmapMis very similar to the one fogmapT. We usedo notation
instead of nested function application. The typgmdpMdoes not
require any wrapping because the monad type construceethjir
serves for the parameter That is:

gmapM f = gfoldl k return

wher e
kcx=doc < ¢
X' < f X
return (¢’ x')

The last onegmapQ is a little more tricky because the structure
processed bygf ol dl is left-associative, whereas the structure of
the list returned bgnmapQis right-associative. For example:

gmpQf  (Eps) =fp: (fs:[])

gfoldl kz (Eps) =(z E‘k' p) ‘k' s
There is a standard way to solve this, using higher-ordestions:

k 1D x)

gnapQ f = gfol dl
wher e
kcxrs=c (f x:rs)
However, again we must do some tiresome type-wrapping to ex-
plain to the type inference engine why this definition is OK:

newtype Qr a = Q ([r]->[r])
unQ (Qf) =f

gmapQ f x = unQ (gfoldl k (const (Qid)) x) []
where

k (Qc) x =Q(\rs ->c¢ (f x: rs))

Notice that{ Q r) is a constant function at the type level; it ignores
its second parametar Why? Because a query returns a type that
is independent of the type of the argument data structure.

7.3 Summary

We contend that one-layer folding is the fundamental wayee p
form term traversal in our framework. This section has shtvet
thegmap functions can all be defined in terms of a single function
gf ol dl . Lest the involved type-wrapping seems onerous, we note
that it occursonly in the definitions of thgmap functions in terms

of gfol dl . The programmer need never encounter it. Fhep
definitions in terms off ol dl might not be very efficient because
they involve some additional amount of higher-order fumtsi. So
the programmer or the implementor of the language extermsiem
choice. Either thgmap operators are defined directly per datatype,
or they are defined in terms @f ol dl once and for all via the
shown “default” declarations.

k (const id) []

8 Type-safe cast

Our entire approach is predicated on the availability offetgafe
cast operator, which in turn is closely related to intenaiguoly-
morphism and dynamic typing. We will discuss such relatedkwo
in Section 9.3. In fact, it is well-known folk lore in the Haskcom-
munity that much of the functionality afast can be programmed
in standard Haskell. Strangely, there is no published gwgmn
of this trick, so we review it here, giving an encoding thah ¢se
regarded as a reference implementation.

8.1 TheTypeabl e class
The key idea is to refine the type claggeabl e, which was previ-
ously assumed to be abstract, as follows:
class Typeable a where
typedf :: a -> TypeRep
The overloaded operatidrypef takes a value and returns a run-

time representation of its type. Here is one possible implesation
of theTypeRep type, and some instances:

data TypeRep = TR String [ TypeRep]

instance Typeable Int where
typed x = TR "Prelude.Int" []
i nstance Typeabl e Bool where
typed x = TR "Prel ude. Bool " []
i nstance Typeable a => Typeable [a] where
typed x = TR "Prelude. List" [typeOf (get x)]
wher e
get :: [a] -> a
get = undefined
instance (Typeable a, Typeable b)
=> Typeabl e (a->b) where

typedX f = TR "Prelude.->" [type(f (getArg f),
typedf (getRes f)]
wher e



getArg :: (a->b) -> a

get Arg = undefined
getRes :: (a->b) -> b
get Res = undefined

Notice thatt ypeOf never evaluates its argumenh particular, the
call (get x) in the list instance will never be evaluafedt simply
serves as a proxy, telling the compiler the type at which steinti-
ate the recursive call dfype , namely to the element type of the
list. If Haskell had explicit type argumentsypeX could dispense
with its value argument, with its calls using type applioatalone?

8.2 Definingcast usingt ypeC

Type-safe cast is easy to implement givgmped, plus a small
Haskell extension:
cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x =r
wher e
r=if typed x typedf (get r)
then Just (unsafeCoerce Xx)
el se Not hi ng

Maybe a -> a
undefi ned

get ::
get x
Here we check whether the argumerdnd result have the same
type representation, and if so coerce the one into the ottere,
unsaf eCoer ce is an extension to Haskell, with the following type:
unsaf eCoerce :: a -> b
Itis easy to implement: operationally it is just the idenfitnction.
It is, of course, just as unsafe as its name implies, and weotlo n
advocate its wide-spread use. Rather, we regasdf eCoer ce as
an implementation device to implement a safe feateaet(); many
language implementations contain a similar trap-door.

8.3 What a mess?

At this point the reader may be inclined to throw up his hants a
declare that if this paper requiressaf eCoer ce, andi nst ance
declarations with magic strings that must be distinct, tihéas no
place in a language like Haskell. But note that the aboversehe
is meant by us as a reference implementation as opposed & a pr
gramming technique.

That is, the compiler should provide direct support for thess
Typeabl e, so that its instance for each data type is automatically
generated by the compiler. The programmer does not inatanti
the class him- or herself. Furthermoosst should be provided
as a primitive — it may bémplementednside the system library
with some kind of low-level coercion, but that is invisibke tand
inaccessible to) the application programmer. With thisrdegf
compiler support, the system is indeed type-safe.

So this section does not present a programming techniqutador
user. Rather, it shows that compiler support éast does not
require some mysterious fiddling with runtime data represen
tions. Instead, somewhat surprisingly, it can be cleanlplém
mented using Haskell’s type-class framework with someilgad
generated simple instance declarations. Furthermoreijtab an
unsavoury stop-gap measure, it is a real advantage to betable
prototype the system without requiring any compiler supjear
ceptunsaf eCoer ce.

5The valueundef i ned has type oral | a. a in Haskell.
6GHC supports scoped type variables, so a nicer way to write
the list instance of ypef is this:
TR "Prel ude. List" [typeXf (undefined :: a)]

One might worry about efficiency, becauszst involves compar-

ing TypeRep data structures. That cost, however, is not fundamen-
tal. TheTypeRep structures can readily be hash-consed (especially
if there is direct compiler support) so that they can be caegbén
constant time. Again, this is the business of the librarytavr{or
even compiler implementor) not the application programmer

9 Alternative approaches

Generic programming has received a great deal of atteratimhye
review the work of others in this section. Before we do, it @il
mentioning that one very brutal approach to generic programg
lies readily to hand, namelysing a universal data typsuch as:

data Univ = | Int | S String | ... etc.

| B ConstrNane [ Univ]

type ConstrNanme = String
A generic program works by (a) converting (embedding) thmutn
data structure tahi v, (b) traversing the universal data structure,
and (c) converting (projecting) the result back to the owgjitype.
This approach has the merit of simplicity, but it is ineffitieand
(worse) completely untyped. In step (b) there is no statieckh
that, when matching on a constructor nari@dr son" , the correct
number or type of fields are matched. There are ways to improve
the type safety and efficiency of this approach; for exangpie,can
use an abstract datatype for generic functions to sepayaee ind
untyped code [17]. However, we concentrate on staticgihed
approaches in the rest of this section.

9.1 Rank-2types

The Hindley-Milner type system is gracefully balanced oruapc
between expressiveness and decidability. A polymorplge tnay

be quantified only at the outermost level — this is callagk-1
type— but in exchange a type inference engine can find the most
general type for any typeable program, without the aid of tgpg
annotations whatsoever.

Nevertheless, higher-ranked types are occasionally us&fgood
example is the type dfui | d, the list-production combinator that is
central to the short-cut deforestation technique [6].yipetis:

build :: forall a. (forall b. (a->b->b) -> b ->h)

-> [a]

Another example isunST, the combinator that encapsulates a state-
ful computation in a pure function [19]:

runST :: forall a. (forall s. STs a) ->a
It is well known that type inference for programs that usehbig
ranked types is intractable [16]. Nevertheless, itis ndf tractable
but easy if sufficient type annotations are given [24]. The tw
Haskell implementations GHC and Hugs support data cortstisic
with rank-2 types; the type inference problem is easier because
the data constructor itself acts as a type annotation. Hemtat
would be very inconvenient hergmapT is not a data constructor,
and it would require tiresome unwrapping to make it so.

So in fact GHC uses a type inference algorithm that permiys an
function to have a type of arbitrary-rank type, providedfisignt
type annotations are given. The details are beyond the sifdpis
paper, but are given in [31]. We believe that treap family of
functions offers further evidence of the usefulness of fartipes

in practical programming.

9.2 Generic traversal
Polytypic programming

The core idea underlying polytypic programming [15, 14, K]
to define a generic function by induction on the structureroa
gument type or the result type of a function. Induction isaliyu



supported by a corresponding language extension: theidunrdef-
inition has cases for sums, products, and others. This appriai-
tially leads topurely-generic functions; that is, ones driven entirely
by the structure of the type. Examples include serialisadiod its
inverse, comparison operations, and hashing. Unfortbndbese
are just about thenly purely-generic operations, and our own view
is that purely-generic programming is too restrictive taiseful.

Thus motivated, customisation of generic programs is asetin
the Generic Haskell program. In [4], techniques are dismliss
extend a polytypic function with cases for a particular ¢ons
tor or a type. Generic Haskell is a very substantial extensio
Haskell, whereas our proposal is much more lightweight aetteb
integrated with ordinary functional programming. Furthere, in
Generic Haskell, a generic function is not a first-claszeiti That
is, one cannot write generic functions operating on otherege
functions, as our traversal combinators (eeger ywher e) require.
Also, (run-time and nominal) type-safe cast is alien to padic
programming. Using techniques such as those in [4], oneeban
codetraversals as opposed to using our combinator style.

Derivable type classes [11] is another extension of Has@edlip-
port generic programming. The idea here is that a generictifum

is just a template that specifies how to generateret ance dec-
laration for the generic function for each data type. It isyeto
over-ride this template for specific types. Again, derieatylpe-
classes are oriented towards structural induction (notimalranal-
ysis) over types; recursion is built into each generic fiomstand
each new generic function requires a new class. Derivalge ty
classes (combined with rank-2 types) are sufficient to defiee
gmap family of functions or thegf ol dI function, with a modest
amount of encoding. However, derivable type classes areuibt
able to define our nominal type case because of their biagdewa
structural induction.

Generalised folds

It is a well-established idea that maps and folds can be dakfore
all kinds of datatypes, even for systems of datatypes [2222P
The inherent assumption is here that recursion into comgptarms
is performedby the fold operation itselfThis sets this idea apart
from our simpler and yet more general approach where layss-w
traversal is favoured. This way, we allow the programmer i@ w
up recursion in any way that is found convenient. Besidesthe
ticipated recursion, generalised folds suffer from anogreblem
articulated in [18]: if larger systems of datatypes are aered, it
is impractical to enumerate all the ingredients for foldiyghand.
In effect, this is another instance of boilerplate: mostraaients
follow a certain scheme, only few ingredients should be joles
by the programmer. To this endpdatablefold algebras were pro-
posed in [18]. The present development generalises (Updata
generalised folds in several dimensions. Firstly, typemsion can
operate at the type level whereas fold algebras are updatbe a
constructor level. Secondly, generic traversal allowsefting all
kinds of traversal schemes as opposed to simple catamoophic
paramorphic fold. Thirdly, the fold algebra approach sisffeom a
closed-world assumption; adding new data types is notgsttiair-
ward. No such assumption is present in our present develupme

The non-recursive map trick

The non-recursive map trick (introduced in Sections 3.2 2u3]
has been known in the functional programming community for
some time, e.g., in the sense of programming with functds28].
In this approach, for every recursive data tyfrese say, one defines
an auxiliary typejree’ thatis the functor foffr ee:

data Tree a = Leaf a | Fork (Tree a) (Tree a)

data Tree' t a = Leaf’ a | Fork’ t t

Now the following type isomorphism holds:
Tree’ (Tree a) a = Tree a

Recursive traversals can then be defined as recursive dasdin
terms of a one-layer functoriabp. To use this approach directly
for practical programming, one needs to write functionsaovert
to and from between these the above isomorphic types, arsitthe
uation becomes noticeably more complicated when there any m
mutually-recursive types involved [32, 28], and breaks d@Mo-
gether when the recursion is non-uniform [25]:

data Seq a = Nil | Cons a Seq (a,a)
In contrast, our approach does not require an auxiliary tique,
works fine for arbitrary datatypes. and it also copes wittliesys
of mutually recursive datatypes. This is a major improvenoser
previous work, and this makes the technique more likely tadesl
in practice. In an untyped setting, the idea to map over thaém
diate children of a term is rather straightforward, e.g.Piolog.
Indeed, it seems that a very similar technique has been ndasp
community already for quite some tinfe.

The idea of building a library of combinators that facil@dfirst-
class tree-traversaitrategies(e.g. top-down, bottom-up, repeat-
until, leftmost-first, etc.) in terms of one-layer travdrsteps is
also well established in the term-rewriting community. Sidea
has seen a flurry of recent activity. There are three mainoguhies
to the combinator style. One is to define a new language fatestr
gic programming. A prime example is the untyped languagatStr
ego [33]. Another approach that can also be used to suppatest
gies in an existing functional language is to transform thgut
data into a single universal data type, and write generiatestr
gies over that universal data type; a good example is the HaxXM
combinator library [35]. Yet another approach that workstipa
ularly well with functional programming is to model strateg as
abstract datatypes. The implementations of the stratempit@-
tors can then hide some encoding needed to present “sgatagi
functions” to the programmer. This approach underliesSha-
funskiprogramme’. All these streams of work describe a rich li-
brary of strategy combinators. Our new contributiotoishow how
the strategic-combinator approach to traversal can be stinigac-
commodated in a typed functional language, where term tsale
are ordinary functions on the user-defined data typgdso, the em-
ployment of rank-2 types and the identification of the fundatal
folding operator improves on the encodings and combinatives
in previous work.

The visitor pattern

In object-oriented programming, thésitor patternis the classic
incarnation of recursive traversal. In fact, though, ananse of
the visitor pattern is rather like the problemaitiwcr ease that we
started with in Section 2: the visitor requires a case fohedata
type (say, class), and the traversal is mixed up with thegssiag
to be done to each node [26]. Many variations on the basitovisi
pattern have been proposed. Palsberg suggests a morecgdtesri
native, theal kabout class, based on reflection; its performance is
poor, and Palsberg offers an interesting discussion ofr atésign
choices [26]. A generative approach to flexible support fiar-p
gramming with visitors is suggested by Visser [34] acconmgpdn
with a discussion of other generative approaches. Giverasscl
hierarchy, an interface for visitor combinators is insizied very
much in the style of strategic programming (see above). Nwode
cessing and recursive traversal is effectively separatatiarbitrary
traversal schemes can be defined.

"Personal communication Alex Aiken.
8http: // wwv. cs. vu. nl / Straf unski



Lieberherr’s et al’sadaptive programmingffers a high-level ap-
proach to traversal of object structures [21] when comptrefisi-
tors. This style assumes primitives to specify pieces offnaation

to be performed along paths that are constrained by startidgs,
nodes to be passed, nodes to be by-passed, and nodes toHelreac
Adaptive programs are typically implemented by a languagere
sion, a reflection-based API, or by compilation to a visitor.

9.3 Type-safe cast

There are two main ways to implement type-safe cast, eathanit
extensive literature: intensional type analysis; or dyitayping.

Intensional type analysis enables one to write functioasdiepend

on the (run-time) type of a value [8, 37]. To this end, one wses
typecase construct to examine the actual structure of a type pa-
rameter or the type of a polymorphic entity, withse alternatives

for sums, products, function types, and basic datatypeis. Sttuc-
tural type analysis can also be performed recursively (ps®gd to
mere one-level type case). Checking for type equality isadsrd
example, and so looks like a promising base for a type-safe as.
Weirich shows [36].

There are two difficulties. First, adding intensional potnphism

to the language is a highly non-trivial step. Second, and evere
seriously, all the work on intensional polymorphism is gehto-
wardsstructural type analysis, whereas our setting absolutely re-
quiresnominaltype analysis (cf. [7]). For example, these two types
are structurally equal, but not nominally equal:

data Person = P String Float -- Nane and hei ght
data Dog = D String Float -- Nane and wei ght

We should not treat &er son like a Dog — or at least we should
allow them to be distinguished.

There is a great deal of excellent research on introdudymgamic
typesinto a statically-typed language; for example [1, 2, 20]wHo
ever, it addresses a more general question than we do, dmatés t
fore much more complicated than necessary for our purpose. |
particular, we do not need the tyfgnani ¢, which is central to
dynamic-typing systems, and hence we do not rieg@case ei-
ther, the principal language construct underlying dynayping.

The classTypeabl e and theunsaf eCoer ce function, are the foun-
dation of theDynami c library, which has been a standard part of the
Hugs and GHC distributions for several years. However, énse
that the material of Section 8 has never appeared in prirg. KEly

idea first appeared in an 1990 email from one of the current au-

thors to the (closed)pl anc mailing list [27], later forwarded to the
(open) Haskell mailing list [12]. Theast function is not so well
known, however; the first reference we can trace was a message
the Haskell mailing list from Henderson [9].

10 Concluding remarks

We have presented a practical design pattern for genergrame
ming in a typed functional setting. This pattern encourafjesgpro-
grammer to avoid the implementation of tiresome and maartee-
intensive boilerplate code that is typically needed to reetinto
complex data structures. This pattern is relevant for XMlcuido
ment processing, language implementation, software sevand
re-engineering. Our approach is simple to understand lseciu
only involves two designated concepts of one-layer traleaad
type cast. Our approach is general because it does notctestri
the datatypes subject to traversal, and it allows to defibigrary
traversal schemes — reusable ones but also applicatiaifispe

ones. Language support for the design pattern was shown to be

simple. The approach takes advantage of research to pu2rank
type systems to work.

Performance

Our benchmarks show that generic programs are reasonably ef
ficient (see also the accompanying software distributiohe
generic program for salary increase, for example, is 3.%gim
slower? than the normal hand-coded program. The dominant cause
of this penalty is our sub-optimal encoding technique fpetgafe
cast. Recall that generic traversals perform a compari$aype
representations for every encountered node at run-timeit So
crucial to make type representations very efficient, pedfiyrvia
built-in support. A hand-written solution does not invoby such
checks. The above factor is also caused by the fact that igener
traversal schemes are not accessible to a number of optiiomisa
which are available for hard-wired solutions. This is besgathe
gnmap family relies on theTer mclass and higher-order style. Fi-
nally, recall that generic traversals tend to traverse mordes than
necessary if extra precautions are omitted to stop reaursio

Perspective

We are currently investigating options to support the keylsima-
torscast andgf ol dl (or thegnap family) efficiently by the GHC
compiler for Haskell. Such a native implementation will i@ra the
penalty related to the comparison of type representatait will
render external generative tool support unnecessary. é&pdber
discusses, such built-in support is not hard to provide flere is
some design space to explore. We are also working on autagnati
the derivation of stop conditions for traversals based anhability
properties of the recursive traversal schemes and thersedeata
structure. We envisage that a template-based approacledddje
used to derive optimised traversals at compile time.
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