Linux Kernel Modules in Rust

Alex Gaynor & Geoffrey Thomas

Alex & Geoff

Vulnerabilities due to memory
unsafety are common, and
preventable

Memory unsafety

Use after free, double free, wild free

Buffer overflow, buffer underflow, wild pointer
Use of uninitialized memory

Data races (often leading to one of the above)
etc

49% - Chrome

Estimated 49% of Chrome security vulnerabilities in 2019 had memory unsafety as a root cause

72% - Firefox

Estimated 72% of Firefox security vulnerabilities in 2019 had memory unsafety as a root cause

817% - odays

Estimated 81% of in the wild Odays (as tracked by Google Project Zero) since 2014 have memory
unsafety as a root cause.

But what about kernel space?

887% - macOS

Estimated 88% of macOS kernel space vulnerabilities in the 10.14 series had memory unsafety as a root
cause

70% - Microsoft

Estimated 70% of Microsoft vulnerabilities since 2006 had memory unsafety as a root cause

65% - Ubuntu

Estimated 65% of kernel CVEs in Ubuntu USNs in the last six months had memory unsafety as a root
cause

65% - Android

Estimated 65% of CVEs in Android from May 2017 to May 2018 had memory unsafety as a root cause

225 - Syzkaller

curl 'https://syzkaller.appspot.com/upstream' | \
grep "K[AM]SAN:" | wc -1

UAF Static Analysis

Detected (real / all) 526 / 559 640/ 679
Confirmed / reported _ 95/130

These vulnerabilities have the
same root cause: C and C++

So what are our options?

(or, why Rust?)

Hardening C

ASLR

Stack canaries

Control flow integrity / Intel CET
STACKLEAK

sparse

Coverity

WebAssembly
eBPF

ring 1
microkernels

Isolation

... at what cost?

From: Ingo Molnar <mingo@kernel.org>
Subject: Re: [RFC PATCH 2/7] x86/sci: add core implementation for system call isolation

To phrase the argument in a bit more controversial form:

If the price of Linux using an insecure C runtime is to slow down system calls with immense PTI-alike
runtime costs, then wouldn't it be the right technical decision to write the kernel in a language runtime
that doesn't allow stack overflows and such?

l.e. if having Linux in C ends up being slower than having it in Java, then what's the performance argument
in favor of using C to begin with? ;-)

And no, I'm not arguing for Java or C#, but | am arguing for a saner version of C.

mailto:mingo@kernel.org

"a saner version of C"

From: Linus Torvalds
Subject: Re: Compiling C++ kernel module + Makefile
Date: Mon, 19 Jan 2004 22:46:23 -0800 (PST)

It sucks. Trust me - writing kernel code in C++is a BLOODY STUPID IDEA.
- the whole C++ exception handling thing is fundamentally broken. It's _especially_broken for kernels.

- any compiler or language that likes to hide things like memory allocations behind your back just isn't a
good choice for a kernel.

- you can write object-oriented code (useful for filesystems etc) in C,_without_the crap that is C++.

What do we want out of our language?

Memory safety

No unwind-based exception handling
Simpler OO

Don't "hide things like memory allocations
behind your back"

No garbage collector

No runtime / thread manager

Performant FFl to C/ assembly

Good but unsuitable safe languages:

Haskell: GC + runtime

Go: GC + runtime + overhead for C calls
D: GC

Ada: static memory allocations

Rust

Compiled language intended for systems programming

Sponsored by Mozilla as a better / more secure language for Firefox (C++)
Drop-in replacement for C for incremental rewrites

Memory safety and thread safety

No GC

OS threading

C-compatible calling convention

A whirlwind tour of Rust,
focusing on safety

Hello world!

fn main() {
let x: 132 = 10;
println!("Hello world! x
}

Variables

fn main() {
let x: 132 = 10;
X = 5;

println!("Hello world! x
}

Variables

fn main() {

let mut x: i32 = 10;

X = 5;

println!("Hello world! x = {}", x);
}

Uninitialized variables

fn main() {
let mut x: i32;
println!("Hello world! x = {}", Xx);
X = 5;

}

error[E@381]: borrow of possibly uninitialized variable:

--> src/main.rs:3:35

3 println!("Hello world! x = {}", x);
|

x

A use of possibly uninitialized

e

Structs

struct Rectangle {
length: f64,
width: f64,

}

impl Rectangle {
fn area(&self) -> f64 {
self.length * self.width

}
}

Traits

trait Shape {

fn area(&self) -> f64;

fn perimeter(&self) -> f64;
}

impl Shape for Rectangle {

fn area(&self) -> f64 { self.length * self.width }

fn perimeter(&self) -> f64 { 2.0 * self.length + 2.0 * self.width }
}

Generics and polymorphism

fn describe<T: Shape>(shape: &T) {
println! ("Area: {}", shape.area());
println! ("Perimeter: {}", shape.perimeter());

}

Trait objects and runtime polymorphism

fn describe(shape: &dyn Shape) {
println! ("Area: {}", shape.area());
println! ("Perimeter: {}", shape.perimeter());

}

Enums

enum OvercommitPolicy {
Heuristic,
Always,
Never,

}

let overcommit_okay = match policy {
OvercommitPolicy: :Heuristic => size < heuristic_limit(),
OvercommitPolicy: :Always => true,
OvercommitPolicy::Never => size < remaining_memory(),

}

Enums with data

enum Address {
IP { host: IPAddress, port: u32 },
UNIX { name: String },
Raw,

}

match address {
Address::IP { host, port } => ...
Address::UNIX { name } => ..
Address::Raw => ...,

b |

Option and Result

enum Option<T> { enum Result<T, E> {
None, 0k (T),
Some<T> Err(E),

} }

if let Some(x) = potential_x

{

}

Error handling

foo? fn read_data() -> Result<Data, Error> {
let file = open('data.txt")?;
Ok (foo)? = let msg = file.read_to_string(...)?;
foo let data = parse(msg)?;
Ok (data)
}

Err(bar)? =
{ return Err(From::from(bar)); }

Panics and unwinding

1/0
[3, 4, 5][10]
[3, 4, 5].get(18) == None

panic! ("everything went wrong")

References, lifetimes, and the
borrow checker

References

fn main() {
let x: i32 =
let y: &132 =
println!("y =
}

1

.
Y

0
&X;
{}",

*y);

References

fn print(a: &i32) {
println!("The value is {}", a);
}

fn main() {
let x: 132 = 10;
print(&x);

}

Dangling references

fn main() { error[E@G597]: "i’ does not live long enough
let mut y: 2i32 - --> src/main.rs:4:11
M]
.. I
for i in 1..5 { 4 y = &i:
y = &j_; AA borrowed value does not live long enough

- 1" dropped here while still borrowed

println! ("{}", y);
- borrow later used here

I
|
} >
printIn! ("{}", vy), 6:

|

Mutable references

fn main() error[E@594]: cannot assign to "*y which is behind

Lo _ . a & reference
let mut x: 132 = 5; --> src/main.rs:4:3

let y: &i32 = &x; |

*y = 10; 3 | let y: &i32 = &x;
} | -- help: consider changing this
to be a mutable reference: “&mut x°
4 | *y = 10;

| ANAAAAAN "y is a & reference, so the data
it refers to cannot be written

Mutable references are unique references

fn main() {

let mut x: i32 = 5;

let y: &mut i32 =
let z: &132 = &x;
*y = ']@,

&mut Xx;

error[EB502]: cannot borrow “x° as immutable
because it is also borrowed as mutable
--> src/main.rs:4:17
|
3 | let y: &mut i32 = &mut Xx;
|l =eeee- mutable borrow
occurs here
4 | let z: &1i32 = &x;
| AN immutable borrow occurs
here
S | *xy =10;
| —------ mutable borrow later used here

Safe abstractions for unsafe
code

Atomics

use std::sync::atomic::*; struct AtomicU32 {
v: UnsafeCell<u32>
let x = AtomicU32::new(1); }
let y = &x; impl AtomicU32 {
let z = &x; fn store(&self,
y.store(3, Ordering::SeqCst); val: u32,
println!("{}", order: Ordering) {

unsafe { atomic_store(self.v.get(),
val, order) }

z.load(Ordering: :SeqCst));

Safe and unsafe Rust

fn zero(x: *mut u8) { fn main() {
unsafe { *x = 0; } let mut x = vec![3u8, 4, 5];
} let p = &mut x[0];
unsafe { zero(p); }
unsafe fn zero(x: *mut u8) { println! ("{:?}", x):
*X = 0; }

}

FFI: calling C from Rust

extern {

fn readlink(path: *const u8, buf: *const u8, bufsize: usize) -> i64;
}
fn rs_readlink(path: &str) -> Result<String, ...> {

let mut r = vec![06u8; 100];

if unsafe { readlink(path.as_ptr(), r.as_mut_ptr(), 100) } < 0 {
Err(...)

} else {
Ok(String::from_utf8(r)?)

}

FFI: calling Rust from C

#![no_mangle] uint32_t add(uint32_x, uint32_y);
extern fn add(x: u32, y: u32) -> u32 {

X +y int main(void) {
} printf("%d\n", add(16, 20));

}

FFI. types

#[repr(C)] extern fn handler(signal: c_int) {...}
struct Sigaction {
sa_handler: extern fn(c_int), let act = Sigaction {
sa_flags: c_int, sa_handler: handler,
}
} unsafe {
extern { sigaction(SIGINT, &act, ptr::null_mut())
fn sigaction(signum: c_int, }

act: *const Sigaction,
oldact: *mut Sigaction);

Incrementally "oxidizing” C

What we’'ve built so far

Kernel modules

struct HelloWorldModule;
impl KernelModule for HelloWorldModule {
fn init() -> KernelResult<Self> ({
println!("Hello world!");
Ok (HelloWorldModule)
}

}
kernel_module! (HelloWorldModule, license: "GPL");

Compiling

S cargo xbuild --target x86_64-1inux-kernel-module.json
S make

obj-m := helloworld.o
helloworld-objs :=
target/x86_64-1linux-kernel-module/debug/libhello_world.a
KDIR ?= /lib/modules/$(shell uname -r)/build
all:

$(MAKE) -C S$(KDIR) M=S$(CURDIR)

printk

error types

kmalloc/kfree
register_sysctl
register_filesystem
alloc_chrdev_region
copy_from_user / access_ok

Bindings

Mapping kernel APIs to
Safe Rust

BOX/Vec/String e Box: Basically std::unique_ptr

e Vec: Heap-based growable linear
array

e String: Linear sequence of utf-8
encoded code points

GlobalAlloc

pub struct KernelAllocator;

unsafe impl GlobalAlloc for KernelAllocator {

unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
// krealloc is used instead of kmalloc because kmalloc is an inline function and can't be

// bound to as a result
return bindings::krealloc(ptr::null(), layout.size(), bindings::GFP_KERNEL) as *mut u8;

}

unsafe fn dealloc(&self, ptr: *mut u8, _layout: Layout) {
bindings: :kfree(ptr as *const c_types::c_void);

}

Heap allocations just work

struct HelloWorldModule {
message: String,
b

impl linux_kernel_module: :KernelModule for HelloWorldModule {
fn init() -> linux_kernel_module: :KernelResult<Self> {
println!("Hello kernel module!");
Ok (HelloWorldModule {
message: "on the heap!".to_owned(),
})

What about __user Desired goals:
pointers? e Typesafe

e Always bounds checked
e Nodouble fetches

UserSlicePtr

impl UserSlicePtr {
pub fn read_all(self) -> error::KernelResult<Vec<u8>>

pub fn reader(self) -> UserSlicePtrReader
pub fn write_all(self, data: &[u8]) -> error::KernelResult<()>

pub fn writer(self) -> UserSlicePtrWriter

fn read(
&self,
buf: &mut UserSlicePtrWriter,
) -> KernelResult<()> {
for ¢ in b"123456789" .iter().cycle().take(buf.len()) {
buf.write(&[*c])?;
}
return Ok(());

Concurrency!

Rust models concurrency with two traits:
Sync & Send:

e Sync: Multiple threads may have
references to values of this type

e Send: Type may transfer ownership to
adifferent thread

Lots of kernel types need safe concurrent
access!

FileOperations must be Sync!

pub trait FileOperations: Sync + Sized {
const VTABLE: FileOperationsVtable;

fn open() -> KernelResult<Self>;
fn read(&self, buf: &mut UserSlicePtrWriter) -> KernelResult<()>;

bindgen and libclang

Architecture support

e x86 LLVM backend

e arm/armé4

e mips minimal Rust support

e powerpc

e riscv mrustc/LLVM CBE

e 55390

e sparc https://github.com/fishinabarrel/linux-kernel-mo
o um? dule-rust/issues/112

Future directions!

The future is Very e Morekernel APIs

e Support existing out of tree module
bl’lg ht! authors (upstream kernel developers:
insert boos here!)
e Better kbuild integration

More kernel APIs

Expand beyond

e chrdevs
e sysctls

Exciting targets:

e Filesystems
e Drivers for particular device classes

Real world out-of-tree module usage?

e What would it take for you to use this?
e We'dlove to find a way to support you!

Better kbuild integration

S cargo xbuild --target S(pwd)/../x86_64-1inux-kernel-module.json
S make
S sudo insmod helloworld.ko

What would it take to have
first-class support for writing
modules in Rust in-tree?

Q&A

https://github.com/fishinabarrel/linux-kernel-module-rust

Follow us for vulnerability statistics: @LazyFishBarrel

https://github.com/alex/linux-kernel-module-rust

