
Linux Kernel Modules in Rust

Alex Gaynor & Geoffrey Thomas

Alex & Geoff

Vulnerabilities due to memory
unsafety are common, and
preventable

Memory unsafety

● Use after free, double free, wild free

● Buffer overflow, buffer underflow, wild pointer

● Use of uninitialized memory

● Data races (often leading to one of the above)

● etc

49% - Chrome
Estimated 49% of Chrome security vulnerabilities in 2019 had memory unsafety as a root cause

72% - Firefox
Estimated 72% of Firefox security vulnerabilities in 2019 had memory unsafety as a root cause

81% - 0days
Estimated 81% of in the wild 0days (as tracked by Google Project Zero) since 2014 have memory
unsafety as a root cause.

But what about kernel space?

88% - macOS
Estimated 88% of macOS kernel space vulnerabilities in the 10.14 series had memory unsafety as a root
cause

70% - Microsoft
Estimated 70% of Microsoft vulnerabilities since 2006 had memory unsafety as a root cause

65% - Ubuntu
Estimated 65% of kernel CVEs in Ubuntu USNs in the last six months had memory unsafety as a root
cause

65% - Android
Estimated 65% of CVEs in Android from May 2017 to May 2018 had memory unsafety as a root cause

225 - Syzkaller
curl 'https://syzkaller.appspot.com/upstream' | \
 grep "K[AM]SAN:" | wc -l

UAF Static Analysis

These vulnerabilities have the
same root cause: C and C++

So what are our options?

(or, why Rust?)

Hardening C ● ASLR

● Stack canaries

● Control flow integrity / Intel CET

● STACKLEAK

● sparse

● Coverity

Isolation ● WebAssembly

● eBPF

● ring 1

● microkernels

... at what cost?

From: Ingo Molnar <mingo@kernel.org>

Subject: Re: [RFC PATCH 2/7] x86/sci: add core implementation for system call isolation

To phrase the argument in a bit more controversial form:

If the price of Linux using an insecure C runtime is to slow down system calls with immense PTI-alike
runtime costs, then wouldn't it be the right technical decision to write the kernel in a language runtime
that doesn't allow stack overflows and such?

I.e. if having Linux in C ends up being slower than having it in Java, then what's the performance argument

in favor of using C to begin with? ;-)

And no, I'm not arguing for Java or C#, but I am arguing for a saner version of C.

mailto:mingo@kernel.org

"a saner version of C"

From: Linus Torvalds

Subject: Re: Compiling C++ kernel module + Makefile

Date: Mon, 19 Jan 2004 22:46:23 -0800 (PST)

It sucks. Trust me - writing kernel code in C++ is a BLOODY STUPID IDEA.

 - the whole C++ exception handling thing is fundamentally broken. It's _especially_ broken for kernels.

 - any compiler or language that likes to hide things like memory allocations behind your back just isn't a

good choice for a kernel.

 - you can write object-oriented code (useful for filesystems etc) in C, _without_ the crap that is C++.

What do we want out of our language?

● Memory safety

● No unwind-based exception handling

● Simpler OO

● Don't "hide things like memory allocations

behind your back"

● No garbage collector

● No runtime / thread manager

● Performant FFI to C / assembly

Good but unsuitable safe languages:

● Haskell: GC + runtime

● Go: GC + runtime + overhead for C calls

● D: GC

● Ada: static memory allocations

Rust

● Compiled language intended for systems programming

● Sponsored by Mozilla as a better / more secure language for Firefox (C++)

● Drop-in replacement for C for incremental rewrites

● Memory safety and thread safety

● No GC

● OS threading

● C-compatible calling convention

A whirlwind tour of Rust,
focusing on safety

Hello world!

fn main() {
 let x: i32 = 10;
 println!("Hello world! x = {}", x);
}

Variables

fn main() {
 let x: i32 = 10;
 x = 5;
 println!("Hello world! x = {}", x);
}

Variables

fn main() {
 let mut x: i32 = 10;
 x = 5;
 println!("Hello world! x = {}", x);
}

Uninitialized variables

fn main() {
 let mut x: i32;
 println!("Hello world! x = {}", x);
 x = 5;
}

error[E0381]: borrow of possibly uninitialized variable: `x`
 --> src/main.rs:3:35
 |
3 | println!("Hello world! x = {}", x);
 | ^ use of possibly uninitialized `x`

Structs

struct Rectangle {
 length: f64,
 width: f64,
}

impl Rectangle {
 fn area(&self) -> f64 {
 self.length * self.width
 }
}

Traits

trait Shape {
 fn area(&self) -> f64;
 fn perimeter(&self) -> f64;
}

impl Shape for Rectangle {
 fn area(&self) -> f64 { self.length * self.width }
 fn perimeter(&self) -> f64 { 2.0 * self.length + 2.0 * self.width }
}

Generics and polymorphism

fn describe<T: Shape>(shape: &T) {
 println!("Area: {}", shape.area());
 println!("Perimeter: {}", shape.perimeter());
}

Trait objects and runtime polymorphism

fn describe(shape: &dyn Shape) {
 println!("Area: {}", shape.area());
 println!("Perimeter: {}", shape.perimeter());
}

Enums

enum OvercommitPolicy {
 Heuristic,
 Always,
 Never,
}

let overcommit_okay = match policy {
 OvercommitPolicy::Heuristic => size < heuristic_limit(),
 OvercommitPolicy::Always => true,
 OvercommitPolicy::Never => size < remaining_memory(),
}

Enums with data

enum Address {
 IP { host: IPAddress, port: u32 },
 UNIX { name: String },
 Raw,
}

match address {
 Address::IP { host, port } => ...,
 Address::UNIX { name } => ...,
 Address::Raw => ...,
}

Option and Result

enum Option<T> {
 None,
 Some<T>
}
if let Some(x) = potential_x
{
 ..
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

Error handling

foo?

Ok(foo)? ⇒
foo

Err(bar)? ⇒
{ return Err(From::from(bar)); }

fn read_data() -> Result<Data, Error> {
 let file = open("data.txt")?;
 let msg = file.read_to_string(...)?;
 let data = parse(msg)?;
 Ok(data)
}

Panics and unwinding

1/0

[3, 4, 5][10]

[3, 4, 5].get(10) == None

panic!("everything went wrong")

References, lifetimes, and the
borrow checker

References

fn main() {
 let x: i32 = 10;
 let y: &i32 = &x;
 println!("y = {}", *y);
}

References

fn print(a: &i32) {
 println!("The value is {}", a);
}

fn main() {
 let x: i32 = 10;
 print(&x);
}

Dangling references

fn main() {
 let mut y: &i32;
 for i in 1..5 {
 y = &i;
 }
 println!("{}", y);
}

error[E0597]: `i` does not live long enough
 --> src/main.rs:4:11
 |
4 | y = &i;
 | ^^ borrowed value does not live long enough
5 | }
 | - `i` dropped here while still borrowed
6 | println!("{}", y);
 | - borrow later used here

Mutable references

fn main() {
 let mut x: i32 = 5;
 let y: &i32 = &x;
 *y = 10;
}

error[E0594]: cannot assign to `*y` which is behind
a `&` reference
 --> src/main.rs:4:3
 |
3 | let y: &i32 = &x;
 | -- help: consider changing this
to be a mutable reference: `&mut x`
4 | *y = 10;
 | ^^^^^^^ `y` is a `&` reference, so the data
it refers to cannot be written

Mutable references are unique references

fn main() {
 let mut x: i32 = 5;
 let y: &mut i32 = &mut x;
 let z: &i32 = &x;
 *y = 10;
}

error[E0502]: cannot borrow `x` as immutable
because it is also borrowed as mutable
 --> src/main.rs:4:17
 |
3 | let y: &mut i32 = &mut x;
 | ------ mutable borrow
occurs here
4 | let z: &i32 = &x;
 | ^^ immutable borrow occurs
here
5 | *y = 10;
 | ------- mutable borrow later used here

Safe abstractions for unsafe
code

Atomics

use std::sync::atomic::*;

let x = AtomicU32::new(1);
let y = &x;
let z = &x;
y.store(3, Ordering::SeqCst);
println!("{}",
 z.load(Ordering::SeqCst));

struct AtomicU32 {
 v: UnsafeCell<u32>
}

impl AtomicU32 {
 fn store(&self,
 val: u32,
 order: Ordering) {
 unsafe { atomic_store(self.v.get(),
 val, order) }
 }
}

Safe and unsafe Rust

fn zero(x: *mut u8) {
 unsafe { *x = 0; }
}

unsafe fn zero(x: *mut u8) {
 *x = 0;
}

fn main() {
 let mut x = vec![3u8, 4, 5];
 let p = &mut x[0];
 unsafe { zero(p); }
 println!("{:?}", x);
}

FFI: calling C from Rust

extern {
 fn readlink(path: *const u8, buf: *const u8, bufsize: usize) -> i64;
}

fn rs_readlink(path: &str) -> Result<String, ...> {
 let mut r = vec![0u8; 100];
 if unsafe { readlink(path.as_ptr(), r.as_mut_ptr(), 100) } < 0 {
 Err(...)
 } else {
 Ok(String::from_utf8(r)?)
 }
}

FFI: calling Rust from C

#![no_mangle]
extern fn add(x: u32, y: u32) -> u32 {
 x + y
}

uint32_t add(uint32_x, uint32_y);

int main(void) {
 printf("%d\n", add(10, 20));
}

FFI: types

#[repr(C)]
struct Sigaction {
 sa_handler: extern fn(c_int),
 sa_flags: c_int,
 ...
}
extern {
 fn sigaction(signum: c_int,
 act: *const Sigaction,
 oldact: *mut Sigaction);
}

extern fn handler(signal: c_int) {...}

let act = Sigaction {
 sa_handler: handler,
 ... }
unsafe {
 sigaction(SIGINT, &act, ptr::null_mut())
}

Incrementally "oxidizing" C

What we’ve built so far

Kernel modules

struct HelloWorldModule;
impl KernelModule for HelloWorldModule {
 fn init() -> KernelResult<Self> {
 println!("Hello world!");
 Ok(HelloWorldModule)
 }
}
kernel_module!(HelloWorldModule, license: "GPL");

Compiling

$ cargo xbuild --target x86_64-linux-kernel-module.json
$ make

obj-m := helloworld.o
helloworld-objs :=
target/x86_64-linux-kernel-module/debug/libhello_world.a
KDIR ?= /lib/modules/$(shell uname -r)/build
all:
 $(MAKE) -C $(KDIR) M=$(CURDIR)

Bindings ● printk

● error types

● kmalloc/kfree

● register_sysctl

● register_filesystem

● alloc_chrdev_region

● copy_from_user / access_ok

Mapping kernel APIs to
Safe Rust

Box/Vec/String ● Box: Basically std::unique_ptr

● Vec: Heap-based growable linear

array

● String: Linear sequence of utf-8

encoded code points

GlobalAlloc

pub struct KernelAllocator;

unsafe impl GlobalAlloc for KernelAllocator {
 unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
 // krealloc is used instead of kmalloc because kmalloc is an inline function and can't be
 // bound to as a result
 return bindings::krealloc(ptr::null(), layout.size(), bindings::GFP_KERNEL) as *mut u8;
 }

 unsafe fn dealloc(&self, ptr: *mut u8, _layout: Layout) {
 bindings::kfree(ptr as *const c_types::c_void);
 }
}

Heap allocations just work
struct HelloWorldModule {
 message: String,
}

impl linux_kernel_module::KernelModule for HelloWorldModule {
 fn init() -> linux_kernel_module::KernelResult<Self> {
 println!("Hello kernel module!");
 Ok(HelloWorldModule {
 message: "on the heap!".to_owned(),
 })
 }
}

What about __user
pointers?

Desired goals:

● Type safe

● Always bounds checked

● No double fetches

UserSlicePtr
impl UserSlicePtr {
 pub fn read_all(self) -> error::KernelResult<Vec<u8>>

 pub fn reader(self) -> UserSlicePtrReader

 pub fn write_all(self, data: &[u8]) -> error::KernelResult<()>

 pub fn writer(self) -> UserSlicePtrWriter
}

fn read(
 &self,
 buf: &mut UserSlicePtrWriter,
) -> KernelResult<()> {
 for c in b"123456789".iter().cycle().take(buf.len()) {
 buf.write(&[*c])?;
 }
 return Ok(());
}

Concurrency! Rust models concurrency with two traits:

Sync & Send:

● Sync: Multiple threads may have

references to values of this type

● Send: Type may transfer ownership to

a different thread

Lots of kernel types need safe concurrent

access!

FileOperations must be Sync!
pub trait FileOperations: Sync + Sized {
 const VTABLE: FileOperationsVtable;

 fn open() -> KernelResult<Self>;
 fn read(&self, buf: &mut UserSlicePtrWriter) -> KernelResult<()>;
}

bindgen and libclang

Architecture support

● x86

● arm/arm64

● mips

● powerpc

● riscv

● s390

● sparc

● um?

LLVM backend

minimal Rust support

mrustc / LLVM CBE

https://github.com/fishinabarrel/linux-kernel-mo

dule-rust/issues/112

Future directions!

The future is very
bright!

● More kernel APIs

● Support existing out of tree module

authors (upstream kernel developers:

insert boos here!)

● Better kbuild integration

More kernel APIs

Expand beyond

● chrdevs

● sysctls

Exciting targets:

● Filesystems

● Drivers for particular device classes

Real world out-of-tree module usage?

● What would it take for you to use this?

● We’d love to find a way to support you!

Better kbuild integration
$ cargo xbuild --target $(pwd)/../x86_64-linux-kernel-module.json
$ make
$ sudo insmod helloworld.ko

What would it take to have
first-class support for writing
modules in Rust in-tree?

Q & A

https://github.com/fishinabarrel/linux-kernel-module-rust

Follow us for vulnerability statistics: @LazyFishBarrel

https://github.com/alex/linux-kernel-module-rust

