
An Improved E-Mail Security Protocol

Bruce Schneier Chris Hall
Counterpane Systems

101 East Minnehaha Parkway
Minneapolis, MN 55419

fschneier,hallg@counterpane.com

Abstract

Current e-mail security systems base their security on
the secrecy of the long-term private key. If this private keyis
ever compromised, an attacker can decrypt any messages—
past, present, or future—encrypted with the corresponding
public key. The system described in this paper uses short
term private-key/public-key key pairs to reduce the magni-
tude of this vulnerability.

1. Introduction

E-Mail systems such as PGP [19, 16, 7, 17], PEM
[11, 9, 2, 8, 16, 17], Entrust [5, 6], and S/MIME [14, 3] use
hashed passphrases to protect the private key in a public-key
encryption system. These systems were designed with the
intention that the user generates a public/private key pair,
and uses that pair for a long period of time. If an attacker
manages to obtain the ling-term private key, then the secu-
rity of the system is severely compromised; he can use it to
decrypt and read all electronic communications encrypted
with the corresponding public key, past, present, and future.

This sort of attack, while expensive, can be very costly to
the victim. In this paper we focus on protocols which mini-
mize the amount of information gained by an attacker in the
private key. These are store-and-forward systems (e.g., ase-
mail encryption programs), where the encryption is meant
to protect a message in transit.

2. Points of Entry

Most popular e-mail encryption programs use a com-
bination of public-key and private-key encryption. These
systems use symmetric-key encryption, such as DES [12],
IDEA [10], or Blowfish [15], to encrypt the messages and
public-key encryption, such as RSA [13] or ElGamal [4],
to encrypt the key. Details of the cryptography involved in
these systems can be found in [18, 16, 17].

An attacker who wishes to decrypt a message has sev-
eral “points of entry” they can use to try and decrypt the
message:

(1) Guess or deduce the one-time symmetric encryption
key.

(2) Mathematically derive the recipient’s private key. For
RSA, this means factoring the recipient’s public mod-
ulus and using the information to deduce the private
key.

(3) Obtain the recipient’s passphrase which protects their
private key. Then, use it to obtain the private key and
thus decrypt the message. There are several ways to do
this including guessing, monitoring keystrokes with a
Trojan-horse program introduced into the recipient’s
computer, TEMPEST-based attacks, or even bribing
the recipient to reveal his passphrase.

There are other attacks against the message: attacking the
sender’s computer through a variety of means, obtaining a
copy of the message after it has been printed, convincing
the receiver (or sender) to send an unencrypted copy of the
message across an insecure network, etc. This research con-
centrates on attacks against the recipient’s private key.

If we assume that a one-time symmetric encryption key
is truly random (or at least independent of other one-time
encryption keys), then the Attack (1) will not compromise
the entire system. The attacker will only be able to use the
encryption key that he obtains to decrypt the one message,
but that will not help him to decrypt other messages. Thus,
we are not really interested in modifying how current sys-
tems solve this problem.

Attacks (2) and (3) on the system represent the sort of
global attacks mentioned above. If an attacker succeeds in
either attack, then he can use the information hs obtains to
decrypt all messages—past, present, and future—sent to the
recipient. In addition, some systems have the added weak-
ness that the attacker can use the information to forge signa-



tures on the recipient’s behalf. It is these “points of entry”
which we focus on closing (or at least shrinking).

3. Notation

Before introducing protocols we must first introduce
some notation.

Sophie Germain prime. A Sophie Germain prime of
first order is a primep such that2p + 1 is also prime.
For second order Sophie Germain primes,2(2p+1)+

1 = 4p + 3 is also prime and a similar pattern holds
for generaln-order primes.

E

k

(P ). The encryption of the plaintextP with a sym-
metric encryption algorithm and keyk.

D

k

(C). The decryption of the ciphertextC with a
symmetric encryption algorithm and keyk.

GF (p

n

) The Galois Field withpn elements.

4. Multiple Encryption Keys

In RSA, knowledge of the private exponent is equivalent
to knowledge of the factorization of the modulus [18]. Ev-
ery message encrypted with the public exponent is vulnera-
ble if the attacker gains knowledge of the private exponent.
One solution to this problem is to use multiple short-lived
public/private key pairs. Thus, a key pair could be valid
for a short period of time, say a day, or valid for only one
message. Then an attacker who deduces the private key for
decrypting one message can decrypt a few other messages
at best, i.e. only those other messages sent during the life-
time of the key pair.

For RSA, picking a new key pair means picking a new
modulus in addition to picking new public/private expo-
nents. This involves generating two large prime numbers,
and can be a costly operation on most computers [16, 19].
Hence, RSA may not be suitable for this kind of e-mail en-
crytion scheme.

There are actually several possible solutions to short-
lived public/private keys. In addition to using RSA with
different exponents and moduli, one can also use a form
of Diffie-Hellman key exchange first published in the SKIP
protocol [1]. Consider the following protocol in which Al-
ice publishes several public keys for people to use to send
messages to her:

(1) Alice chooses a first-order Sophie Germain primep

and a primitive elementg of the multiplicative group
of the fieldGF (2p+ 1).

(2) Alice chooses several random exponentse

1

; : : : ; e

k

and computesPK
i

= g

e

i

(mod p) for i = 1; : : : ; k.

(3) Alice assigns a lifetime to each key so that at most two
keys are valid at any point in time, and every key is
valid for only a short period of time, say a day. Alter-
natively, the key could only be good for one message.

(4) Alice publishes thePK
i

, lifetimes, p, and g as her
public keys and stores thee

i

as her private keys.

Note that in Step (2) Alice is essentially performing the
first half of a Diffie-Hellman key exchange. Now suppose
that Bob wishes to send a message to Alice. He performs
the following steps:

(5) Bob selects a public key from Alice. If the keys have
short lifetimes, he selects the one with the appropriate
lifetime. If they keys are one-time keys, he selects the
next key in the list (and then Alice’s computer deletes
it from the list).

(6) Bob chooses a random exponente

b

and computes
PK

b

= g

e

b

(mod p).

(7) Bob computesk = PK

e

b

i

(mod p) and uses the re-
sult as the private encryption key for the message he
wishes to send.

(8) Bob encrypts his messageM with the keyk and sends
PK

i

; PK

b

; E

k

(M) to Alice.

Once Alice receives the message she performs the fol-
lowing steps:

(9) Alice looks up the private keye
i

that corresponds to
thePK

i

in the message sent to her by Bob.

(10) Alice checks the lifetime of the key against the time
that Bob sent the message. If she doubts that the mes-
sage was sent while the key was valid, then she can
choose whether or not to decrypt the message. If she
no longer has the decrypting key because she threw it
away when it expired, then she can simply ask Bob to
resend the message.

(11) She computesk = PK

e

i

b

(mod p) and uses the
result to decrypt the message Bob sent her:M =

D

k

(E

k

(M)).

If Alice wants to she can even choose a different Sophie
Germain prime for each public key she publishes.

This kind of system provides a way to minimize the num-
ber of encrypted messages that are common to any pub-
lic/private key pair. The fewer messages tied to a key pair,
the fewer messages that can be decrypted if an attacker re-
covers the private key.

Once Alice has a way of generating multiple encryption
keys she still needs a way of distributing them. After gen-
erating a list of one-time public encryption keys Alice can



sign each of them with her long-term signature key and then
upload them to a server. Ideally the server should accept
network-based requests to obtain a public key for Alice.
Once it receives such a request it should pick the current
key from Alice’s list, according to the lifetimes specified
by Alice, and sends it to the recipient. When a key expires
the server should throw away the key in order to conserve
space.

5. Key Management

Whether a user has one private decryption key or many,
key management is a difficult issue. Rather than forcing a
user to memorize their private decryption key, current sys-
tems allow the user to chose a passphrase which the sys-
tem then uses to encrypt the private decryption key. Then,
whenever the user wants to decrypt a message sent to him,
he uses his passphrase to decrypt the private decryption key
and then decrypt the message.

5.1. Multiple Passphrases

The other attack we mentioned was guessing the user’s
passphrase. In most systems, the user’s passphrase is not
directly used to encrypt their private key. Rather, the
passphrase is hashed with a salt and the resulting hash is
used. Thus, there are actually two different attacks against
the passphrase:

1. Guess the encryption key used to encrypt a particular
private key. This amounts to guessing all or part of the
result of hashing the actual passphrase with the salt.

2. Guess the actual passphrase. Then given any salt, the
attacker can deduce the corresponding encryption key.

The former attack is clearly no harder than the latter be-
cause it is trivial to find the salted hash of the passphrase
given the passphrase and salt value. However, if a cryp-
tographic hash function is used, then the first attack is not
equivalent to the second, i.e. an attacker cannot easily de-
rive other salted hash values of the passphrase given one
salted hash value. This suggests that we could encrypt mul-
tiple private keys with the same passphrase as long as we
used a different salt for each exponent. The system would
be more secure than if we used the same salt for each key.

While using different salts protects against the first at-
tack, it does not protect against the second attack. An alter-
native approach is to use an entirely different passphrase for
each private key. Since each public/private key pair is used
to encrypt only one message, each message will be indepen-
dent of every other message in an attack on the passphrase.
If an attacker manages to guess a passphrase, then s/he can

only use it to find one private key and hence decrypt only
one message.

However, there is a difficulty with the latter suggestion.
Each passphrase has to be remembered. For even a moder-
ate number of public/private key pairs this can be a fairly
daunting task. People are likely to forget some of their
passphrases, or choose passphrases that are similar. The
former has the disadvantage that someone would not be able
to decrypt all messages sent to them, and the latter has the
disadvantage that an attacker may be able to derive other
passphrases with only a little bit of effort once they obtain
one. A mix of the above two solutions seems to provide the
best solution.

A user uses one passphrase to protect several private
keys. For each key, they use a different salt. Since the salt
and passphrase are used to generate an encryption key for
each private key, the different salts protect the user against
the first attack listed above. If the user minimizes the num-
ber of private keys they protect with each passphrase, then
they also minimize the amount of damage done when an
attacker guesses a passphrase. Since not every private key
is protected by the same passphrase, the user gains partial
protection against the second attack listed above.

If the system is designed properly, then the user could
have to remember only one or two passphrases at any point
in time. Each time the user generates a new set of pub-
lic/private key pairs they can choose a new passphrase to
protect the set. As the set of keys expire the user can throw
them away until the entire set is empty. Since a user really
only needs to generate a new set when their most of the keys
from the previous one are about to expire, they only need to
keep track of at most two sets of keys at any point in time.

6. Conclusion

As we point out in previous sections, current encryp-
tion programs have the common weakness that obtaining
a user’s private encryption key can cause extensive dam-
age. We pointed out the various ways that an attacker can
learn the private encryption key and also gave suggestions
as to how to minimize the damage done by the respective
attacks. In general, our suggestions amount to minimizing
the amount of information that is protected by an encryp-
tion key. When combined with long term signature keys, a
powerful e-mail security system can be written.

References

[1] A. Aziz, T. Markson, H. Prafullchandra, ”Simple Key-
Management for Internet Protocols (SKIP),” Internet-Draft,
work in progress, August 1996.



[2] D. Balenson, “Privacy Enhancement for Internet Electronic
Mail: Part III—Algorithms, Modes, and Identifiers,” RFC
1423, Feb 1993.

[3] S. Dusse, “S/MIME Message Specification: PKCS Secu-
rity Services for MIME,” IETF Networking Group Internet
Draft, Sep 1996.

[4] T. ElGamal, “A Public-Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms,”IEEE Transactions
on Information Theory,V. IT-31, n. 4, 1985, pp. 469–472.

[5] I. Curry, “Entrust Overview, Version 1.0,” Entrust Technolo-
gies, Oct. 96.

[6] P.C. van Ooorschot, ”Standards Supported by Entrust, Ver-
sion 2.0,” Entrust Technologies, Dec 1996.

[7] S. Garfinkel,PGP: Pretty Good Privacy, O’Reilly & Asso-
ciates, 1995.

[8] B.S. Kaliski, “Privacy Enhancement for Internet Electronic
Mail: Part IV—Key Certificates and Related Services,” RFC
1424, Feb 1993.

[9] S.T Kent, “Privacy Enhancement for Internet Electronic
Mail: Part II—Certificate Based Key Management,” RFC
1422, Feb 1993.

[10] X. Lai, J. Massey, and S. Murphy, “Markov Ciphers and Dif-
ferential Cryptanalysis,”Advances in Cryptology—CRYPTO
’91, Springer-Verlag, 1991, pp. 17–38.

[11] J. Linn, “Privacy Enhancement for Internet ElectronicMail:
Part I—Message Encipherment and Authentication Proce-
dures,” RFC 1421, Feb 1993.

[12] National Bureau of Standards, NBS FIPS PUB 46, “Data
Encryption Standard,” National Bureau of Standards, U.S.
Department of Commerce, Jan 1977.

[13] R. Rivest, A. Shamir, and L. Adleman, “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM, v. 21, n. 2, Feb 1978, pp. 120–
126.

[14] RSA Data Security, Inc., “S/MIME Implementation Guide
Interoperability Profiles, Version 2,” S/MIME Editor, Draft,
Oct 1996.

[15] B. Schneier, “Description of a New Variable-Length Key,
64-Bit Block Cipher (Blowfish),” Fast Software Encryp-
tion, Cambridge Security Workshop Proceedings, Springer-
Verlag, 1994, pp. 191-204.

[16] B. Schneier,E-Mail Security,John Wiley & Sons, 1995.
[17] B. Schneier,Applied Cryptography, Second Edition, John

Wiley & Sons, 1996.
[18] D. Stinson,Cryptography Theory and Practice, CRC Press,

1995, pp. 138–145.
[19] P. Zimmermann,The Official PGP User’s Guide, MIT Press,

1995.


